Tag
Featured Blog
blog image

Here’s What the Wall Street Journal Got Wrong about the Medication Treatment of ADHD Patients: A Lesson in Science Media Literacy

A recent Wall Street Journal article raised alarms by concluding that many children who start medication for ADHD will later end up on several psychiatric drugs. It’s an emotional topic that will make many parents, teachers, and even doctors worry: “Are we putting kids on a conveyor belt of medications?”

The article seeks to shine a light on the use of more than one psychiatric medication for children with ADHD.   My biggest worry about the article is that it presents itself as a scientific study because they analyzed a database.  It is not a scientific study.  It is a journalistic investigation that does not meet the standards of a scientific report..

The WJS brings attention to several issues that parents and prescribers should think about. It documents that some kids with ADHD are on more than one psychiatric medication, and some are receiving drugs like antipsychotics, which have serious side effects.  Is that appropriate? Access to good therapy, careful evaluation, and follow-up care can be lacking, especially for low-income families.  Can that be improved?  On that level, the article is doing something valuable: it’s shining a spotlight on potential problems.

It is, of course, fine for a journalist to raise questions, but it is not OK for them to pretend that they’ve done a scientific investigation that proves anything. Journalism pretending to be science is both bad science and bad journalism.

Journalism vs. Science: Why Peer Review Matters

Journalists can get big datasets, hire data journalists, and present numbers that look scientific.  But consider the differences between Journalism and Science. These types of articles are usually checked by editors and fact-checkers. Their main goals are:

 Is this fact basically correct?

 Are we being fair?

 Are we avoiding legal problems?

But editors are not qualified to evaluate scientific data analysis methods.  Scientific reports are evaluated by experts who are not part of the project.  They ask tough questions like: 

Exactly how did you define ADHD? 

How did you handle missing data? 

Did you address confounding? 

Did you confuse correlation with causation?

If the authors of the study cannot address these and other technical issues, the paper is rejected.

The WSJ article has the veneer of science but lacks its methodology.  

Correlation vs. Causation: A Classic Trap

The article’s storyline goes something like this:  A kid starts ADHD medication.  She has additional problems or side effects caused by the ADHD medications.   Because of that, the prescriber adds more drugs.  That leads to the patient being put on several drugs.  Although it is true that some ADHD youth are on multiple drugs, the WSJ is wrong to conclude that the medications for ADHD cause this to occur.  That simply confuses correlation with causation, which only the most naïve scientist would do.

In science, this problem is called confounding. It means other factors (like how severe or complex a child’s condition is) explain the results, not just the thing we’re focused on (medication for ADHD). 

The WSJ analyzed a database of prescriptions.  They did not survey the prescribers who made the prescriptions of the patients who received them.  So they cannot conclude that ADHD medication caused the later prescriptions, or that the later medications were unnecessary or inappropriate. 

Other explanations are very likely.   It has been well documented that youth with ADHD are at high risk for developing other disorders such as anxiety, depression,  and substance use.  The kids in the WSJ database might have developed these disorders and needed several medications.  A peer-reviewed article in a scientific journal would be expected to adjust for other diagnoses. If that is not possible, as it is in the case of the WSJ’s database, a journal would not allow the author to make strong conclusions about cause-and-effect.

Powerful Stories Don’t Always Mean Typical Stories

The article includes emotional accounts of children who seemed harmed by being put on multiple psychiatric drugs.  Strong, emotional stories can make rare events feel common.  They also frighten parents and patients, which might lead some to decline appropriate care. 

These stories matter. They remind us that each data point is a real person.  But these stories are the weakest form of data.  They can raise important questions and lead scientists to design definitive studies, but we cannot use them to draw conclusions about the experiences of other patients.  These stories serve as a warning about the importance of finding a qualified provider,  not as against the use of multiple medications.  That decision should be made by the parent or adult patient based on an informed discussion with the prescriber.

Many children and adults with ADHD benefit from multiple medications. The WSJ does not tell those stories, which creates an unbalanced and misleading presentation.  

Newspapers frequently publish stories that send the message:  “Beware!  Doctors are practicing medicine in a way that will harm you and your family.”   They then use case studies to prove their point.  The title of the article is, itself, emotional clickbait designed to get more readers and advertising revenue.  Don’t be confused by such journalistic trickery.

What Should We Conclude?

Here’s a balanced way to read the article.  It is true that some patients are prescribed more than one medication for mental health problems.  But the article does not tell us whether this prescribing practice is or is not warranted for most patients.  I agree that the use of antipsychotic medications needs careful justification and close monitoring.  I also agree that patients on multiple medications should be monitored closely to see if some of the medications can be eliminated.  Many prescribers do exactly that, but the WSJ did not tell their stories.  

It is not appropriate to conclude that ADHD medications typically cause combined pharmacotherapy or to suggest that combined pharmacotherapy is usually bad. The data presented by the WSJ does not adequately address these concerns.  It does not prove that medications for ADHD cause dangerous medication cascades.

We have to remember that even when a journalist analyzes data, that is not the same as a peer-reviewed scientific study. Journalism pretending to be science is both bad science and bad journalism.

Stephen V. Faraone
blog image

Can ADHD be Treated With Mindfulness-Based Interventions?

How effective are mindfulness-based interventions in treating attention deficit symptoms?

Mindfulness has been defined as intentionally directing attention to present moment experiences with an attitude of curiosity and acceptance. Mindfulness-based interventions (MBIs) aim to improve mindfulness skills.

A newly-published meta-analysis of randomized controlled trials (RCTs) by a team of British neurologists and psychiatrists explores the effectiveness of MBIs in treating a variety of mental health conditions in children and adolescents. Among those conditions is the attention deficit component of ADHD.

A comprehensive literature search identified studies that met the following criteria:

1)     The effects of mindfulness were compared against control conditions “either no contact, waitlist, active, or attention placebo. The waitlist means the control group receives the same treatment after the study concludes. Active control means that a known, effective treatment (as opposed to a placebo) is compared to an experimental treatment. Attention placebo means that controls receive a treatment that mimics the time and attention received by the treatment group, but is believed not to have a specific effect on the subjects. Participants were randomly assigned to the control condition.
2)     The MBI was delivered in more than one session by a trained mindfulness teacher, involved sustained meditation practice, and was not mixed in with another activity such as yoga.

Eight studies evaluating attention deficit symptoms, with a combined total of 1,158 participants, met inclusion criteria. The standardized mean difference (SMD) was 0.19, with a 95% confidence range of 0.04 to 0.34 (p= .02). That indicates a small effect size for MBIs in reducing attention deficit symptoms. Heterogeneity was low (I2 = 35, p = .15), and teenager test showed little sign of publication bias (p = 0.42).

When looking only at studies with active controls, five studies with a total of 787 participants yielded an SMD of 0.13, with a 95%confidence interval of -0.01 to 0.28 (p = .06), indicating a tiny effect size that failed to reach significance. Active controls most commonly received health education, with a few receiving social responsibility training or Hath a yoga.

Overall, this meta-analysis suggests limited effectiveness, especially when compared with active controls.  If MBIs are effective for ADHD, their effect on symptoms is very small.  Thus, such treatments should not be used in place of the many well-validated, evidenced-based therapies available. Whether longer periods of MBI (training times varied between 2 and 18 hours spread out over 2to 24 weeks) might result in greater effect sizes remains unexplored.

August 21, 2021
blog image

The Economic Burden of ADHD

The Economic Burden of ADHD

ADHD, especially when untreated, impairs patients and creates difficulties in families.  

Although these are the proximal targets of treatment, ADHD also burdens society due, for example, to underemployment and the use of health resources.   A recent study assessed the economic burden using the Danish population registries, researchers, which link medical information with employment, education, crime, and social care registers while maintaining confidentiality. They identified 5,269 adults with adult ADHD who had not been diagnosed with ADHD in childhood and, we can assume, were probably not treated for the disorder. They excluded patients with other psychiatric diagnoses and cases without a same-sex sibling free of any diagnosed psychiatric diagnoses. That left 460 pairs of same-sex siblings, one with an adult with ADHD and the other with no psychiatric diagnosis. They selected the non-ADHD sibling closest in age to the ADHD sibling. Using siblings mitigated the effects of genetics and upbringing between the ADHD group and normally developing controls.

Looking at personal income (combining work income and public transfers), adults with ADHD on average brought home about 12,000 Euros less - almost a third less - than their sibling counterparts. They also paid 40% less tax. Balancing that out, their after-tax income was roughly 7,500 Euros less than their siblings. With the additional personal cost of prescribed medication(prescriptions are relatively inexpensive in Denmark, and co-payments even more so) the net personal cost to adults with ADHD was 7,700 Euros.

The net public costs were considerably greater. That was primarily due to the reduction in taxes paid (about 4,500 Euros) and the increase in income replacement transfers (just over 5,500 Euros). The cost of additional crimes committed by adults with ADHD added another 1,000 Euros. Additional primary and secondary health care costs contributed another 1,000 Euros. Subsidies for prescribed medicines added 661 Euros, but that was partly counterbalanced by a reduction of 344 Euros in education costs. There were no significant differences in costs from traffic accidents or adult continuation of foster care. Overall, the net per capita public cost of adults with ADHD was just over 12,400 Euros each year.

Combining public and private costs, the per capita economic burden of adult ADHD was just over 20,000 Euros each year.

The study could not evaluate the extent to which ADHD treatment may reduce the economic burden, but given many studies that show treatment for ADHD reduces impairments, we would expect treatment to have a positive impact on the economic burden.  These results are extremely important for policymakers and for those who control the allocation of treatment in healthcare systems.  Although treating ADHD incurs costs, not treating it incurs even greater costs in the long run

May 5, 2023
blog image

Driving, Safety, and ADHD

How to Improve Driving Safety for Teens and Adults With ADHD

Drivers with ADHD are far more likely to be involved in crashes, to be at fault in crashes, to be in severe crashes, and to be killed in crashes. The more severe the ADHD symptoms, the higher the risk. Moreover, ADHD is often accompanied by comorbid conditions such as oppositional-defiant disorder, depression, and anxiety that further increase the risk.

What can be done to reduce this risk? A group of experts has offered the following consensus recommendations:

·        Use stimulant medications. While there is no reliable evidence on whether-stimulant medications are of any benefit for driving, there is solid evidence that stimulant medications are effective in reducing risk. But there is also a “rebound effect” in many individuals after the medication wears off, in which performance becomes worse than it had been before medication. It is therefore important to time the taking of medication so that its period of effectiveness corresponds with driving times. If one has to drive right after waking up, it makes sense to take a rapid-acting form. The same holds for late-night driving that may require a quick boost.
·        Use a stick shift vehicle wherever possible. Stick shifts make drivers pay closer attention than automatic transmissions. The benefits of alertness are most notable in city traffic. But using a stick shift is far less beneficial in highway driving, where shifting is less frequent.
·        Avoid cruise control. Highways can be monotonous, making drivers more prone to boredom and distraction. That is even more true for those with ADHD, so it is best to keep cruise control turned off.
·        Avoid alcohol. Drinking and driving is a bad idea for everyone, but, once again, it’s even worse for those with ADHD. Parents should consider the no-questions-asked policy of either picking up their teenager anytime and anywhere or setting up an account with a ride-sharing service.
·        Place the smartphone out of reach and hearing. Cell phone use is as about as likely to impair as alcohol. Hands-free devices only reduce this risk moderately, because they continue to distract. Texting can be deadly. Sending a short text or emoticon can be the equivalent of driving 100 yards with one’s eyes closed. Either turn on Do Not Disturb mode or, for even greater effectiveness, place the smartphone in the trunk.
·        Make use of automotive performance monitors. These can keep track of maximum speeds and sudden acceleration and braking, to verify that a teenager is not engaging in risky behaviors.
·        Take advantage of “graduated driver’s licensing laws” wherever available. These laws forbid the presence of peers in the vehicle for the first several (for example, six) months of driving. Parents can extend that period for teenagers with ADHD, or set it as a condition in states that lack such laws.
·        Encourage practicing after obtaining a learner’s permit. Teenagers with ADHD generally require more practice than those without. A “pre-drive checklist” can be a good place to start. For example: check the gas, check the mirrors, make sure the view through the windows is unobstructed, put your cell phone in Do not disturb mode and place it out of reach, put on a seatbelt, and scan for obstacles.
·        Consider outsourcing. Look for a driving school with a professional to teach good driving skills and habits.

Experts do not agree on whether to delay licensing for those with ADHD. On the one hand, teenagers with ADHD are 3-4 years behind in the development of brain areas responsible for executive functions that help control impulses and better guide behavior. Delaying licensing can reduce risk by about 20 percent. On the other hand, teens with ADHD are more likely to drive without a license, and no one wants to encourage that, however inadvertently. Moreover, graduated driver’s licensing laws only have a legal effect on teens who get their licenses at the customary age.

August 13, 2021
blog image

Liquid Medication Options for ADHD Adults with Autism Spectrum Disorder

Long-Acting Liquid Methylphenidate for Treating ADHD in Intellectually Capable Adults with Autism Spectrum Disorder

Treating ADHD With Methylphenidate in Adults With Autism

A team from Harvard Medical School and Massachusetts General Hospital conducted a six-week open-label trial of liquid-formulation extended-release methylphenidate (MPH-ER) to treat ADHD in adults with high-functioning autism spectrum disorder (HF-ASD). ASD is a lifelong disorder with deficits in social communication and interaction and restricted, repetitive behaviors. Roughly half of those diagnosed with ASD also are diagnosed with ADHD.

This was the first stimulant trial in adults with both ASD and ADHD. There were twelve males and three female participants, all with moderate to severe ADHD, and in their twenties, with IQ scores of at least 85.

The use of a liquid formulation enabled doses to be raised very gradually, starting with a daily dose of 5 mg(1mL) and titrating up to 60 mg over the first three weeks, then maintaining that level through the sixth week. Participants were reevaluated for ADHD symptoms every week during the six-week trial. The severity of ASD was assessed at the start, midpoint, and conclusion of the trial, as were other psychiatric symptoms.

Before the trial, researchers agreed on a combination of targets on two clinician-rated scoring systems that would have to be reached for treatment to be considered successful. One is a score of 2 or less on the CGI-S, a measure of illness severity, with scores ranging from 1 (normal, not at all ill) to 7 (most extremely ill). The other is a reduction of at least 30 percent in the AIS RS score, which combines each of 18 symptoms of ADHD on a severity grid (0=not present; 3=severe; overall minimum score: 0; overall maximum score: 54).

After the trial, twelve of the fifteen patients (80 percent) met the preset conditions for success. Fully fourteen (93 percent) saw a ≥ 30 percent reduction in their AISRS score, while twelve scored ≤ 2 on illness severity.

However, when using the patient-rated ASRS scoring system, only five (33 percent) saw a ≥ 30 percent reduction in ADHD severity.

Thirteen participants (87percent) reported at least one adverse event, and nine (60 percent) reported two or more. One reported a serious adverse event (attempted suicide) in a patient with multiple prior attempts. Because the attempt was not deemed due to medication, they continued and completed the trial. Seven participants experienced titration-limiting adverse events (headaches, palpitations, jaw pain, and insomnia). Headache was most frequent (53%), followed by insomnia and anxiety(33% each), and decreased appetite (27%).

During the trial, weight significantly decreased, while pulse significantly increased. There were no significant differences in other vital and cardiovascular measurements.

The authors concluded, "this OLT of short-term MPH-ER therapy documents that acute treatment with MPH-ER in young adults with ASD was associated with significant improvement in ADHD symptoms, mirroring the typically-expected magnitude of response observed in adults with only ADHD. Treatment with MPH-ER was well-tolerated, though associated with a higher than expected frequency of adverse events."

They also cautioned, "The results of this study need to be considered in light of some methodological limitations. This was an open-label study; therefore, assessments were not blind to treatment. We did not employ a placebo control group and, therefore, cannot separate the effects of treatment from time or placebo effects. ... firmer conclusions regarding the safety and efficacy of MPH-ER for the treatment of ADHD in HF-ASD populations await results from larger, randomized, placebo-controlled clinical trials."

August 7, 2021
blog image

How to Identify ADHD in Adults With Alcohol Use Disorder (AUD)

How to identify ADHD in adults with alcohol use disorder (AUD)

ADHD is far more prevalent among persons with AUD (roughly20 percent) than it is in the general population. The most accurate way of identifying ADHD is through structured clinical interviews. Given that this is not feasible in routine clinical settings, ADHD self-report scales offer a less reliable but much less resource-intensive alternative. Could the latter be calibrated in a way that would yield diagnoses that better correspond with the former?

A German team compared the outcomes of both methods on 404 adults undergoing residential treatment for AUD. All were abstinent while undergoing evaluations. First, to obtain reliable ADHD diagnoses, each underwent the Diagnostic Interview for ADHD in Adults, DIVA. If DIVA indicated probable ADHD, two expert clinicians conducted successive follow-up interviews. ADHD was only diagnosed when both experts concurred with the DIVA outcome.

Participants were then asked to use two adult ADHD self-report scales, the six-item Adult ADHD Self Report Scale v1.1 (ASRS) and the 30-item Conner's Adult ADHD Rating Scale (CAARS-S-SR). The outcomes were then compared with the expert interview diagnoses.

Using established cut-off values for the ASRS, less than two-thirds of patients known to have ADHD were scored as having ADHD by the test. In other words, there was a very high rate of false negatives. Lowering the cut-off to a sum score ≥ 11 resulted in an incorrect diagnosis of more than seven out of eight. But the rate of false positives shared to almost two in five. Similarly, the CAARS-S-SR had its greatest sensitivity (ability to accurately identify those with ADHD) at the lowest threshold of ≥ 60, but at a similarly high cost in false positives (more than a third).

The authors found it was impossible to come anywhere near the precision of the expert clinical interviews. Nevertheless, they judged the best compromise to be to use the lowest thresholds on both tests and then require positive determinations from both. That led to successfully diagnosing more than three out of four individuals known to have ADHD, with a false positive rate of just over one in five.

Using this combination of the two self-reporting questionnaires with lower thresholds, they suggest, could substantially reduce the under-diagnosis of ADHD in alcohol-dependent patients.

August 5, 2021
blog image

Pharmacotherapy and ADHD in Adults with Autism Spectrum Disorder

How effective is pharmacotherapy of ADHD in adults with Autism Spectrum Disorder?

Autism spectrum disorder (ASD) is frequently comorbid with ADHD. Among adults with ADHD, as many as half are reported to also have ASD.

A Dutch team set out to answer two questions:


1)    Do adults with ADHD and comorbid ASD experience less effectiveness in pharmacological treatment for ADHD than adults with only ADHD
2)    Do adults with ADHD and comorbid ASD experience different or more severe side effects of pharmacological treatment for ADHD than adults with only ADHD, as measured in side effect scores, blood pressure, heart rate, and weight?

This was a retrospective study, using well-documented medical records, of the effects of drug treatment with methylphenidate (MPH), dexamphetamine (DEX), atomoxetine (ATX), bupropion, or modafinil.

The researchers compared 60 adults with comorbid ASD and ADHD to 226 adults with only ADHD. ADHD symptoms were scored using the Conner's ADHD Rating Scale: Self Report-Short Version (CAA RS: S-S). Side effects of ADHD medication were measured using either a 13-item or 20-item checklist with 4-point scales for item response. Researchers also tracked changes in body weight, blood pressure, and heart rate.

Following treatment, ADHD symptoms among the comorbid group declined by a quarter, and among the ADHD-only group by almost a third. There was no significant difference between men and women. Controlling for age, gender, and ADHD subtype, a comorbid diagnosis of ASD also did not significantly affect ADHD symptom reduction.

Turning to side effects, in the ADHD+ASD group, there were significant increases in decreased appetite and weight loss, and decreases in agitation, anxiety, and sadness/unhappiness. In the ADHD-only group, there were significant increases in decreased appetite, weight loss, and dry mouth, and decreases in sleeping disorder, nervousness, agitation, anxiety, and sadness/unhappiness. Yet there were no significant differences between the two groups. Side effects increased and decreased similarly in both. Likewise, there were no significant differences between the groups in changes in heart rate and blood pressure. The only significant difference in medication dosage was for bupropion, which was higher in the ADHD+ASD group, though without any sign of the difference in side effects.

The authors concluded that this retrospective study "showed pharmacological treatment of adults with diagnoses of ADHD and ASD to be just as successful as the pharmacological treatment of adults with only ADHD," but cautioned that "randomized controlled trial should be conducted to evaluate the effectiveness and possible side effects of pharmacological treatment for ADHD in patients with ASD more reliably."

August 3, 2021
blog image

New Insights Into The Brains of People Living with ADHD and ADHD Symptoms

New insights into the brains of people living with ADHD and those with ADHD symptoms.

In this study, researchers found subtle differences in the cortex of the brains of children with ADHD.

The ENIGMA-ADHD Working Group published a second large study on the brains of people with ADHD in the American Journal of Psychiatry this month. In this second study, the focus was on the cerebral cortex, which is the outer layer of the brain.

 ADHD symptoms include inattention and/or hyperactivity and acting impulsively. The disorder affects more than one in twenty (5.3%) children, and two-thirds of those diagnosed continue to experience symptoms as adults.
In this study, researchers found subtle differences in the brain's cortex when they combined brain imaging data on almost 4,000 participants from 37 research groups worldwide. The differences were only significant for children and did not hold for adolescents or adults. The childhood effects were most prominent and widespread for the surface area of the cortex. More focal changes were found in the thickness of the cortex. All differences were subtle and detected only at a group level, and thus these brain images cannot be used to diagnose ADHD or guide its treatment.


These subtle differences in the brain's cortex were not limited to people with the clinical diagnosis of ADHD: they were also present - in a less marked form - in youth with some ADHD symptoms. This second finding results from a collaboration between the ENIGMA-ADHD Working Group and the Generation Study from Rotterdam, which has brain images of, 2700 children aged 9-11 years from the general population. The researchers found more symptoms of inattention to be associated with a decrease in cortical surface area. Furthermore, siblings of those with ADHD showed changes to their cortical surface area that resembled their affected sibling. This suggests that familial factors such as genetics or shared environment may play a role in brain cortical characteristics.


This is the largest study to date to look at the cortex of people with ADHD. It included 2246 people with a diagnosis of ADHD and 1713 people without, aged between 4 and 63 years old. This is the second study published by the ENIGMA-ADHD Working Group; the first examined structures that are deep in the brain. The ADHD Working Group is one of over 50 working groups of the ENIGMA Consortium, in which international researchers pull together to understand the brain alterations associated with different disorders and the role of genetic and environmental factors in those alterations.


The authors say the findings could help improve understanding of the disorder. 'We identify cortical differences that are consistently associated with ADHD, by combining data from many research groups internationally. We find that the differences extend beyond narrowly-defined clinical diagnoses and are seen, in a less marked manner, in those with some ADHD symptoms and unaffected siblings of people with ADHD. This finding supports the idea that the symptoms underlying ADHD may be a continuous trait in the population, which has already been reported by other behavioral and genetic studies.'. In the future, the ADHD Working Group hopes to look at additional key features in the brain - such as the structural connections between brain areas - and to increase the representation of adults affected by ADHD, on whom limited research has been performed to date.

August 1, 2021
blog image

Is there a relationship between ADHD and Internet Gaming Disorder?

Is there a relationship between ADHD and Internet Gaming Disorder?

A Spanish team of researchers recently completed a comprehensive review of studies looking for links between compulsive video gaming (both online and offline) and a variety of psychological disorders, including anxiety, depression, social phobia, and ADHD. The focus was on behavior "of sufficient severity to result in significant impairment in personal, family, social, educational, occupational or other important areas of functioning."

The team identified 24 studies, of which eight with a combined total of 16,786 participants looked for associations with either ADHD or its hyperactivity component. Participants included children, adolescents, and adults. One large longitudinal study, with 3,034 participants, found no association. Another study with 1,095 participants found a small effect. Two more, with a combined total of 11,868 found medium effect sizes. Four studies found large associations, but their combined total number of participants, was789, comprising less than a twentieth of the combined participants.

The authors concluded, "The relationship between Internet Gaming Disorder and ADHD and hyperactivity symptoms were analyzed in eight studies. Seven of them reported full association, with four finding large, two finding small, and one reporting moderate, effect sizes. The studies comprised two case-control, five cross-sectional and one longitudinal design; they later found no association between the two variables."[1]They also emphasized that 87 percent "of the studies describe significant correlations ... with ADHD or hyperactivity symptoms."[2]

Yet they did not note that all the studies with large effect sizes were comparatively small. And while they presented funnel charts evaluating publication bias for anxiety and depression, they did not do so for ADHD, where the small studies with very large effect sizes suggest publication bias (i.e., that evidence for association is exaggerated due to the early publication of positive findings).

Leaving out these small studies, the four high-powered studies with 15,997 participants reported effect sizes ranging from none to medium. Overall, that suggests that there is an association between ADHD and video gaming, though not a particularly strong one.  Moreover, due to the nature of the study designs, this work cannot conclude that the small effect observed is due to playing video games being a risk factor for ADHD or to the possibility that ADHD youth are more attracted to video games than others.

July 28, 2021
blog image

Social and Self-Stigmatization in Adults with ADHD

Social and Self-Stigmatization in Adults with ADHD

A German team recruited 104 adults with ADHD at both inpatient and outpatient ADHD clinics, and from ADHD self-help groups. Just under two-thirds were being treated with ADHD drugs, most with methylphenidate.


Just under a quarter reported high internalized stigma. Two in five reported high levels of alienation, meaning a sense of "not being a fully functioning, valuable member of society." Three in ten reported high levels of social withdrawal.


On the other hand, only two participants reported high levels of stereotype endorsement, meaning personal acceptance of stereotypes associated with mental illness. And more than two-thirds reported high stigma resistance, meaning they were internally resistant to stigmatization. Thus, while most were free of significant internalized stigma, a still substantial minority were not.


Most of the participants expected to be discriminated against and treated unfairly by employers, colleagues at work, neighbors, and teachers should they reveal that they have ADHD. Relatively few expected to be discriminated against by health professionals, family, and friends. Almost half expected discrimination if they confided to strangers they were dating.


Over two-thirds of participants reported they had encountered public stereotypes concerning ADHD. But, on balance, they rated these at low levels of intensity. Nevertheless, among those perceiving such stereotypes, eight out of nine sensed some degree of public doubt about the validity of ADHD as a genuine ailment ("ADHD does not exist in adults"), and three out of four had at some point encountered the argument that "ADHD is invented by drug companies." More than four out of five had heard allegations that ADHD results from bad parenting, and almost three in four had heard the claim that it results from watching too much television or playing too many video games.


These data call for more education of the public about the nature and causes of ADHD. Information reduces stigmatization, so the widespread dissemination of the facts about ADHD is warranted.

April 8, 2024
blog image

To what extent does ADHD affect sleep in adults, and in what ways?

To what extent does ADHD affect sleep in adults, and in what ways?

We are only beginning to explore how ADHD affects sleep in adults. A team of European researchers recently published the first meta-analysis on the subject, drawing on thirteen studies with 1,439 participants. They examined both subjective evaluations from sleep questionnaires and objective measurements from actigraphy and polysomnography. However, due to differences among the studies, only two to seven could be combined for any single topic, generally with considerably fewer participants (88 to 873).


Several patterns emerged. Looking at results from sleep questionnaires, they found that adults with ADHD were far more likely to report general sleep problems (very large SMD effect size 1.55). Getting more specific, they were also more likely to report frequent night awakenings(medium effect size 0.56), taking longer to get to sleep (medium-to-large effect size 0.67), lower sleep quality (medium-to-large effect size 0.69), lower sleep efficiency (medium effect size 0.55), and feeling sleepy during the daytime(large effect size 0.75).

There was little to no sign of publication bias, though considerable heterogeneity on all but night awakenings and sleep quality.


Actigraphy readings confirmed some subjective reports. On average, adults with ADHD took longer to get to sleep (large effect size 0.80) and had lower sleep efficiency (medium-to-large effect size 0.68). They also spent more time awake (small-to-medium effect size 0.40). There was little to no sign of publication bias and there was little heterogeneity among studies.


None of the polysomnography measurements, however, found any significant differences between adults with and without ADHD. All effect sizes were small (under 0.20), and none came close to being statistically significant.


There were four instances where measurement criteria overlapped those from actigraphy and self-reporting, with varying degrees of agreement and divergence. There was no significant difference in total sleep time, matching findings from both the questionnaires and actigraphy. On percent time spent awake, polysomnography found little to no effect size with no statistical significance, whereas actigraphy found a small-to-medium effect size that did not quite reach significance, and self-reporting came up with a medium effect size that was statistically significant. Sleep onset latency and sleep efficiency, for which questionnaires and actigraphy found medium-to-large effects, the polysomnography measurements found little to none, with no statistical significance.


Polysomnography found no significant differences in stage 1-sleep, stage 2-sleep, slow-wave sleep, and REM sleep. Except for slow-wave sleep, there was no sign of publication bias. Heterogeneity was generally minimal.


One problem with the extant literature is that many studies did not take medication status into account.

The authors concluded, "future studies should be conducted in medicatio- naïve samples of adults with and without ADHD matched for comorbid psychiatric disorders and other relevant demographic variables."


In summary, these findings provide robust evidence that ADHD adults report a variety of sleep problems.  In contrast, objective demonstrations of sleep abnormalities have not been consistently demonstrated.   More work in medication-naïve samples is needed to confirm these conclusions.

July 24, 2021
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.