ADHD aggregates with Alzheimer's disease and any dementia within families
Alzheimer's disease is characterized by an aging-related progressive deterioration in cognition and ability for independent living. It is the most common form of dementia. Few studies, with limited sample sizes, have probed the relationship between ADHD and dementia, with conflicting results.
A Swedish study team used the country's universal system of population and health registers' linked through unique personal identification numbers - to examine patterns among the more than 2.1 million Swedes born between 1980 and 2001.
Each of these individuals was then linked to their biological relatives, parents, grandparents, uncles, and aunts through the Medical Birth Register and Multi-generation Register.
This generated three cohorts of relatives representing different levels of genetic relatedness: parents sharing half of their genes; grandparents sharing a quarter of their genes; and uncles and aunts who also share a quarter of their genes with index persons. After linking index persons to their biological relatives, the study cohorts contained more than 2.2 million parents, over 2.5 million grandparents, and almost a million uncles/aunts.
By the end of follow-up, 3,042 (0.13%) parents, 171,732 (6.82%) grandparents, and 1,369 (0.15%) uncles/aunts had a diagnosis of Alzheimer's. The numbers for any dementia were 3,792 (0.17%) for parents, 197,843 (7.86%) for grandparents, and 1,697 (0.18%) for uncles/aunts.
Parents of persons with ADHD were 34% more likely to have any dementia, and 55% more likely to have Alzheimer's. Among grandparents of persons with ADHD, the association dropped to 10-11% more likely for any kind of dementia. Among aunts and uncles, it dropped to a 14% greater likelihood of Alzheimer's(similar to grandparents) and a 4% greater chance of any dementia. In this case, however, the results were not statistically significant, probably due in part to the much smaller sample size
Both with parents and grandparents of persons with ADHD, the risk of early onset of any kind of dementia was well over twice as high as the risk of late-onset.
"We found that ADHD aggregated with AD [Alzheimer's disease] and any dementia within families, and the strength of association attenuated with decreasing degree of genetic relatedness," the authors concluded, and called for further studies to identify genetic variants and family-wide environmental risk factors contributing to both conditions. If verified by such studies, that would indicate a need for "investigation of early-life psychiatric prevention on the development of neurodegenerative diseases in older age."
Methylphenidate, a psychostimulant, is among the drugs most frequently prescribed to children with ADHD.
Using magnetic resonance imaging(MRI), studies have shown that as children mature, those with ADHD differ from controls in developing regionally thinner cortices (the folded outer layer of the cerebrum that is essential to rational thought) and smaller lower basal ganglia(structures linked to the thalamus in the base of the brain and involved in the coordination of movement). The cortical differences were found in the right medial frontal motor region, the left middle/inferior frontal gyrus, and the right posterior parieto-occipital region in children with ADHD who were not taking psychostimulants.
A Dutch/Norwegian team of researchers conducted a randomized, double-blind, placebo-controlled trial with 96 males recruited from Dutch clinical programs. 48 were boys aged 10-12 years, and 47 were men between the ages of 23 and 40. None had previously been on methylphenidate. There were no significant differences in baseline age, ADHD symptom severity, estimated intelligence quotient, the proportion of right-handedness, or region of interest brain characteristics between the placebo and medication groups.
The trial was carried out during the standard 17-week waiting list time for evaluation and treatment to begin so that those receiving a placebo during the trial would not ultimately be at a disadvantage. The same MRI scanner was used for all measurements, both before and after treatment.
Among the boys, the methylphenidate group showed increased thickness in the right medial cortex, while the placebo group showed cortical thinning. In adults, both groups showed cortical thinning. When converted into an estimated mean rate of change in cortical thickness for the right medial cortex, boys taking methylphenidate could expect to lose about 0.01 mm per year, versus about 0.14 mm for boys not on methylphenidate.
In the right posterior cortex, scans also showed reduced thinning in the methylphenidate treatment group, though to a lesser extent. But there was no reduced thinning in the left frontal cortex.
The authors noted several limitations. The sample size was small. Second, "because we did not detect significant relationships between changes in cortical [regions of interest] and changes in symptom severity, the functional significance remains uncertain." Third, the follow-up period was relatively short, not allowing any assessment of the longer-term effects of the medication. Fourth, the differences in effects on the three brain regions examined were uneven, contrary to what had been expected from previous studies. They recommended replication with larger groups and longer follow-ups.
Older adults are at greater risk for cardiovascular disease. Psychostimulants may contribute to that risk through side effects, such as elevation of systolic blood pressure, diastolic blood pressure, and heart rate.
On the other hand, smoking, substance abuse, obesity, and chronic sleep loss - all of which are associated with ADHD - are known to increase cardiovascular risk, and stimulant medications are an effective treatment for ADHD.
So how does this all shake out? A Dutch team of researchers sets out to explore this. Using electronic health records, they compared all 139 patients 55 years and older at PsyQ outpatient clinic, Program Adult ADHD, in The Hague. Because a principal aim of the study was to evaluate the effect of medication on cardiovascular functioning after first medication use, the 26 patients who had previously been prescribed ADHD medication were excluded from the study, leaving a sample size of 113.
The ages of participants ranged from 55 from 79, with a mean of 61. Slightly over half were women. At the outset, 13 percent had elevated systolic and/or diastolic blood pressure, 2 percent had an irregular heart rate, 15 percent had an abnormal electrocardiogram, and 29 percent had some combination of these (a "cardiovascular risk profile"), and 21 percent used antihypertensive medication.
Three out of four participants had at least e comorbid disorder. The most common are sleep disorders, affecting a quarter of participants, and unipolar mood disorders (depressive or more rarely manic episodes, but not both), also affecting a quarter of participants.
Twenty-four patients did not initiate pharmacological treatment. Of the 89 who received ADHD medication, 58 (65%) reported positive effects, and five experienced no effect. Thirty-eight (43%) discontinued ADHD medication while at the clinic due to lack of effect or to side effects. The most commonly reported positive effects were enhanced concentration, more overview, less restlessness, more stable mood, and having more energy. The principal reasons for discontinuing medication were anxiety/depression, cardiovascular complaints, and lack of effect.
Methylphenidate raised heart rate and lowered weight, but had no significant effect on systolic and diastolic blood pressure. Moreover, there was no significant correlation between methylphenidate dosage and any of these variables, nor between methylphenidate users taking hypertensive medication and those not taking such medication. There was no significant difference in systolic or diastolic blood pressure and heart rate before and after the use of methylphenidate among patients with the cardiovascular risk profiles.
Systolic blood pressure rose in ten out of 64 patients, with two experiencing an increase of at least 20 mmHg. It descended in five patients, with three having a decrease of at least 20 mmHg. Diastolic blood pressure rose by at least 10 mmHg in four patients, while dropping at least 10 mmHg in five others.
The authors concluded "that the use of a low dose of ADHD-medication is well tolerated and does not cause clinically significant cardiovascular changes among older adults with ADHD, even among those with an increased cardiovascular risk profile. Furthermore, our older patients experienced significant and clinically relevant improvement of their ADHD symptoms using stimulants, comparable with what is found among the younger age group," and that "the use of methylphenidate may be a relatively safe and effective treatment for older adults with ADHD, under the condition that all somatic complaints and especially cardiovascular parameters are monitored before and during pharmacological treatment."
Yet they cautioned that "due to the observational nature of the study and the lack of a control group, no firm conclusions can be drawn as to the effectiveness of the stimulants used. ... Important factors that were not systematically reported were the presence of other risk factors, such as smoking, substance (ab)use, aspirin use, and level of physical activity. In addition, the response to medication was not systematically measured"
An international team of researchers recently published the first meta-analysis of studies examining the prevalence of ADHD in older adults, with a particular focus on those fifty and older. They also looked at rates of treatment.
Since clinical evaluations a reconsidered the gold standard in diagnosing ADHD, and validated rating scales are considered more of a preliminary screening tool, the team distinguished between the two and ran two separate meta-analyses:
· Using validated ADHD rating scales. Combining nine studies with just over 32,000 participants, the team reported a prevalence of 2.2 percent. However, since the studies were not uniform in fixing the minimum end of their age ranges, constraining the results to persons 50 and older lowered the prevalence to 1.5 percent.
· Using clinical diagnoses. Combining seven studies with 11.7 million participants, they found a crude prevalence of 0.23 percent, which, after removing persons under 50, was adjusted to 0.19 percent. Limiting the results to the use of national registries further reduced the prevalence to 0.14 percent.
That means there's an order of magnitude (tenfold) difference between the two estimates of prevalence.
Recognizing that clinical diagnoses are the preferred means of diagnosis, the authors wrote, "methodological aspects need to be considered when interpreting the gap between the pooled prevalence estimates based on different assessment methods. The estimates from studies based on research diagnosis [ADHD rating scales] may overestimate the prevalence of ADHD in older adults. ... Thus, screening assessment tools for ADHD should only be used as the first step of a more comprehensive clinical ADHD assessment."
On the other hand, the authors also see an indication "that clinicians, to some extent, might fail to recognize and properly treat ADHD symptoms in older adults. Clinical presentation of ADHD may change with age, with inattentive symptoms becoming more prevalent than hyperactivity and impulsivity."
The team also performed a third meta-analysis, to look at ADHD pharmacological treatment rates among older adults. For this one, they pooled four studies encompassing over 9.2 million persons. After constraining the results to those fifty and older, they found a prevalence of only 0.02%. This points to a wide gap between rates of diagnosis and rates of treatment, even after noting that only one of the studies included data on non-pharmacological treatment.
Though there have been numerous studies on the efficacy of cognitive-behavioral therapy (CBT) for ADHD symptoms in children, adolescents, and adults, few have examined efficacy among adults over 50. A new study begins to fill that void.
Psychiatric researchers from the New York University School of Medicine, Massachusetts General Hospital, and Pfizer randomly assigned 88 adults diagnosed with elevated levels of ADHD to one of two groups. The first group received 12 weeks of CBT targeting executive dysfunction - a deficiency in the ability to properly analyze, plan, organize, schedule, and complete tasks. The second group was assigned to a support group, intended to serve as a control for any effects arising from participating in group therapy. Each group was split into subgroups of six to eight participants. One of the CBT subgroups was run concurrently with one of the support-only subgroups and matched on the percent receiving ADHD medications.
Outcomes were obtained for 26 adults aged 50 or older (12 in CBT and 14 in support) and compared with 55 younger adults (29 in CBT and 26 in support). The mean age of the younger group was 35 and of the older group 56. Roughly half of the older group, and 3/5ths of the younger group, were on medication. Independent("blinded") clinicians rated symptoms of ADHD before and after treatment.
In the blind structured interview, both inattentive scores and executive function scores improved significantly and almost identically for both older and younger adults following CBT. When compared with the controls(support groups), however, there was a marked divergence. In younger adults, CBT groups significantly outperformed support groups, with mean relative score improvements of 3.7 for inattentive symptoms and 2.9 for executive functioning. In older adults, however, the relative score improvements were only 1.1 and0.9 and were not statistically significant.
Given the non-significant improvements over placebo, the authors' conclusion that "The results provide preliminary evidence that CBT is an effective intervention for older adults with ADHD" is premature. As they note, a similar large placebo effect was seen in adults over 50 in a meta-analysis of CBT for depression, rendering the outcomes non-significant. Perhaps structured human contact is the key ingredient in this age group. It may also be, as suggested by the positive relative gains on six of seven measures, that CBT has a small net benefit over placebo, which cannot be validated with such a small sample size. Awaiting results from studies with larger sample sizes, it is, for now, impossible to reach any definitive conclusions about the efficacy of CBT for treating adults over 50.