Cookie Preferences
By clicking, you agree to store cookies on your device to enhance navigation, analyze usage, and support marketing. More Info
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

Inflammatory bowel disease (IBD) consists of 2 main subtypes: Crohn’s disease and ulcerative colitis. Typical symptoms include abdominal pain, diarrhea, and rectal bleeding. Both are incurable, increase the risk of colorectal cancer, and often affect other organs as well.
A single earlier study suggested a weak link between childhood-onset IBD and ADHD.
A Danish research team used its country’s national registers – based on a single-payer national health insurance system that encompasses virtually the entire population – to include all 3,559 patients diagnosed with pediatric-onset IBD from 1998 through 2018.
The team then matched these individuals five-to-one on age, age of diagnosis, year of diagnosis, sex, municipality of residence, and time period, with 17,795 individuals from the same pool who were free of IBD.
ADHD was identified based on two criteria: clinical diagnoses in patient records, and methylphenidate stimulant prescriptions in the medications register.
Overall, the team found no significant association between pediatric-onset IBD and ADHD. The same was true for both Crohn’s disease and ulcerative colitis.
There were no differences in outcomes for boys or girls.
There was also no significant association found using only ADHD diagnoses or only methylphenidate prescriptions.
Among children and adolescents with IBD onset under age 14, there was a borderline significant association, but it was a negative one: They were less likely to subsequently be clinically diagnosed with ADHD or to receive prescriptions for methylphenidate.
The team concluded, “Remarkably, we found a reduced risk of receiving methylphenidate and being diagnosed with ADHD, which merits further investigation.”
Rebecca Kristine Kappel, Tania Hviid Bisgaard, Gry Poulsen, and Tine Jess, “Risk of Anxiety, Depression, and Attention-Deficit/ Hyperactivity Disorder in Pediatric Patients With Inflammatory Bowel Disease: A Population-Based Cohort Study,” Clinical and Translational Gastroenterology (2024), 15:e00657, https://doi.org/10.14309/ctg.0000000000000657.
In December 2016, the U.S. Food and Drug Administration (FDA) warned “that repeated or lengthy use of general anesthetic and sedation drugs during surgeries or procedures in children younger than 3 years or in pregnant women during their third trimester may affect the development of children’s brains.” The FDA adds, “Health care professionals should balance the benefits of appropriate anesthesia against the potential risks, especially for procedures lasting longer than 3 hours or if multiple procedures are required in children under 3 years,” and “Studies in pregnant and young animals have shown that using these drugs for more than 3 hours caused widespread loss of brain nerve cells.”
That raises a concern that such exposure could lead to increased risk of psychiatric disorders, including ADHD.
Noting “There are inconsistent reports regarding the association between general anesthesia and adverse neurodevelopmental and behavioral disorders in children,” a South Korean study team conducted a nationwide population study to explore possible associations through the country’s single-payer health insurance database that covers roughly 97% of all residents.
The team looked at the cohort of all children born in Korea between 2008 and 2009, and followed them until December 31, 2017. They identified 93,717 children in this cohort who during surgery received general anesthesia with endotracheal intubation (a tube inserted down the trachea), and matched them with an equal number of children who were not exposed to general anesthesia.
The team matched the unexposed group with the exposed group by age, sex, birth weight, residential area at birth, and economic status.
They then assessed both groups for subsequent diagnoses of ADHD.
In general, children exposed to general anesthesia were found to have a 40% greater risk of subsequently being diagnosed with ADHD than their unexposed peers.
This effect was found to be dose dependent by several measures:
All three measures were highly significant.
The authors concluded, “exposure to general anesthesia with ETI [endotracheal intubation] in children is associated with an increased risk of ADHD … We must recognize the possible neurodevelopmental risk resulting from general anesthesia exposure, inform patients and parents regarding this risk, and emphasize the importance of close monitoring of mental health. However, the risk from anesthesia exposure is not superior to the importance of medical procedures. Specific research is needed for the development of safer anesthetic drugs and doses.”
Although ADHD was conceived as a childhood disorder, we now know that many cases persist into adulthood. My colleagues and I charted the progression of ADHD through childhood, adolescence, and adulthood in our "Primer" about ADHD,http://rdcu.be/gYyV. Although the lifetime course of ADHD varies among adults with the disorder, there are many consistent themes, which we described in the accompanying infographic. Most cases of ADHD startin uterobefore the child is born. As a fetus, the future ADHD person carries versions of genes that increase the risk for the disorder. At the same time, they are exposed to toxic environments. These genetic and environmental risks change the developing brain, setting the foundation for the future emergence of ADHD.
In preschool, early signs of ADHD are seen in emotional lability, hyperactivity, disinhibited behavior, and speech, language, and coordination problems. The full-blown ADHD syndrome typically occurs in early childhood, but can be delayed until adolescence. In some cases, the future ADHD person is temporarily protected from the emergence of ADHD due to factors such as high intelligence or especially supportive family and/or school environments. But as the challenges of life increase, this social, emotional, and intellectual scaffolding is no longer sufficient to control the emergence of disabling ADHD symptoms. Throughout childhood and adolescence, the emergence and persistence of the disorder are regulated by additional environmental risk factors such as family chaos along with the age-dependent expression of risk genes that exert different effects at different stages of development. During adolescence, most cases of ADHD persist and by the teenage years, many youths with ADHD have onset with a mood, anxiety, or substance use disorder. Indeed, parents and clinicians need to monitor ADHD youth for early signs of these disorders. Prompt treatment can prevent years of distress and disability. By adulthood, the number of comorbid conditions has increased, including obesity, which likely has effects on future medical outcomes.
The ADHD adult tends to be very inattentive by showing fewer symptoms of hyperactivity and impulsivity. They remain at risk for substance abuse, low self-esteem, occupational failure, and social disability, especially if they are not treated for the disorder. Fortunately, there are several classes of medications available to treat ADHD that are safe and effective. And the effects of these medications are enhanced by cognitive behavior therapy, as I've written about in prior blogs.

Youths with disabilities face varying degrees of social exclusion and mental, physical, and sexual violence.
A Danish researcher used the country's extensive national registers to explore reported sexual crimes against youths across the entire population. Of 679,683 youths born from 1984to 1994 and between the ages of seven and eighteen, 8,039 (1.2 percent) were victims of at least one reported sex crime.
The sexual offenses in question included rape, sexual assault, sexual exploitation, incest, and indecent exposure. Sexual assault encompassed both intercourse/penetration without consent or engaged in with a youth not old enough to consent (statutory rape).
The study examined numerous disabilities, including ADHD, which was the most common one. It also performed a regression analysis to tease out other covariants, such as parental violence, parental inpatient mental illness, parental suicidal behavior or alcohol abuse, parental long-term unemployment, family separation, and children in public care outside the family.
In the raw data, youths with ADHD were 3.7 times more likely to be a victim of sexual crimes than normally developing youths. That was roughly equal to the odds for youths with an autism spectrum disorder or mental retardation, but considerably higher than for blindness, stuttering, dyslexia, and epilepsy (all roughly twice as likely to be victims of such crimes), and even higher than for the loss of hearing, brain injury, or speech or physical disabilities.
Looking at covariate, family separation, having a teenage mother, or being in public care almost doubled the risk of being a victim of sexual crimes. Parental violence or parental substance abuse increased the risk by 40 percent, and parental unemployment for over 21 weeks increased the risk by 30 percent. Girls were nine times more likely to be victimized than boys. Living in a disadvantaged neighborhood made no difference, and living in immigrant neighborhoods actually reduced the odds of being victimized by about 30 percent.
After adjusting for other risk factors, youths with ADHD were still almost twice as likely to be victims of reported sex crimes than normally developing youths. All other youths with disabilities registered significantly lower levels of risk after adjusting for other risk factors: for those who were blind, 60 percent higher risk; for those with autism, hearing loss, or epilepsy, 40 percent higher risk. Communicative disabilities - speech disability, stuttering, and dyslexia - actually turned out to have protective effects.
This points to a need to be particularly vigilant for signs of sexual abuse among youths with ADHD.
The Background:
Myopia is a growing global health concern linked to conditions like macular degeneration, glaucoma, and retinal detachment. Its prevalence has surged in recent decades; by 2050, an estimated 5 billion people will have myopia. The increase is especially marked in Asia – a survey in Taiwan reports that 84% of students aged 15 to 18 are myopic, with 24% severely affected.
Dopamine is an important neurotransmitter in the retina, involved in eye development, visual signaling, and refractive changes. The dopamine hypothesis, suggesting that retinal dopamine release helps prevent myopia, has emerged as a leading theory of myopia control.
Most studies show ADHD is highly heritable, often involving dopamine system genes. ADHD is strongly associated with dopaminergic abnormalities, especially in dopamine transporter function and release dynamics.
Medications for ADHD, like methylphenidate, atomoxetine, and clonidine, help regulate dopamine to reduce symptoms.
The Study:
Given dopamine’s critical involvement in both ADHD and myopia, a Taiwanese research team hypothesized that medications for ADHD that influence dopaminergic pathways may have a significant effect on myopia risk.
To evaluate this hypothesis, the team conducted a nationwide cohort study using data from Taiwan’s National Health Insurance (NHI) program, which covers 99% of the nation’s 23 million residents and provides access to comprehensive eye care and screenings. Taiwan requires visual acuity screenings beginning at age four, with annual examinations for school-aged children to promote the early detection of visual anomalies such as myopia.
Furthermore, ADHD medication and diagnosis are tracked through compulsory diagnostic codes. This permits an accurate assessment of the effects of dopaminergic medications on myopia risk.
Propensity score allocation using a multivariable logistic regression model was applied to reduce bias from confounding influences, pairing cohorts based on similar scores.
The Results:
Comparing 133,945 individuals with ADHD with an equal number without ADHD, untreated ADHD was associated with a 22% greater risk of myopia.
However, after adjusting for covariates (gender, age, insured premium, comorbidities, location, and urbanization level), the ADHD cohort receiving medication treatment showed a 39% decreased risk of myopia relative to the untreated ADHD cohort.
Narrowing this further to the ADHD cohort receiving dopaminergic medications reduced the risk of myopia by more than half (52%) relative to the untreated ADHD cohort.
Treatment with two dopaminergic medications reduced the risk by well over two-thirds (72%) relative to the untreated ADHD cohort.
There were no significant differences between methylphenidate, atomoxetine, and clonidine. Each reduced risk by about 50%.
The team did not directly compare the ADHD cohort receiving dopaminergic medications with the non-ADHD cohort. But if there were 122 cases of myopia in the ADHD cohort for every 100 cases in the non-ADHD cohort, and dopaminergic medications halved the cases in the ADHD cohort to about 60, that would represent a roughly 40% reduction in myopia risk relative to the non-ADHD cohort.
The team concluded, “our research indicates that pharmacologically treated ADHD children have a reduced risk of myopia. Conversely, untreated ADHD children are at a heightened risk relative to those without ADHD. Moreover, the cumulative effects of ADHD medications were found to notably decrease myopia incidence, emphasizing the protective influence of dopaminergic modulation in these interventions.”
The Take-Away:
Children with untreated ADHD are more likely to develop myopia, but those receiving dopaminergic medications had a substantially lower risk. The findings suggest that ADHD medications may help protect against myopia by boosting dopamine signaling. More research is needed before firmly drawing this conclusion, but this research could open the door to new approaches for preventing myopia in at-risk children.
Background:
ADHD treatment includes medication, behavioral therapy, dietary changes, and special education. Stimulants are usually the first choice but may cause side effects like appetite loss and stomach discomfort, leading some to stop using them. Cognitive behavioral therapy (CBT) is effective but not always sufficient on its own. Research is increasingly exploring non-drug options, such as transcranial direct current stimulation (tDCS), which may boost medication effectiveness and improve results.
What is tDCS?
tDCS delivers a weak electric current (1.0–2.0 mA) via scalp electrodes to modulate brain activity, with current flowing from anode to cathode. Anodal stimulation increases neuronal activity, while cathodal stimulation generally inhibits it, though effects vary by region and neural circuitry. The impact of tDCS depends on factors such as current intensity, duration, and electrode shape. It targets cortical areas, often stimulating the dorsolateral prefrontal cortex for ADHD due to its role in cognitive control. Stimulation of the inferior frontal gyrus has also been shown to improve response inhibition, making it another target for ADHD therapy.
There is an ongoing debate about how effective tDCS is for individuals with ADHD. One study found that applying tDCS to the left dorsolateral prefrontal cortex can help reduce impulsivity symptoms in ADHD, whereas another study reported that several sessions of anodic tDCS did not lead to improvements in ADHD symptoms or cognitive abilities.
New Research:
Two recent meta-analyses have searched for a resolution to these conflicting findings. Both included only randomized controlled trials (RCTs) using either sham stimulation or a waitlist for controls.
Each team included seven studies in their respective meta-analyses, three of which appeared in both.
Both Wang et al. (three RCTs totaling 97 participants) and Wen et al. (three RCTs combining 121 participants) reported very large effect size reductions in inattention symptoms from tDCS versus controls. There was only one RCT overlap between them. Wang et al. had moderate to high variation (heterogeneity) in individual study outcomes, whereas Wen et al. had virtually none. There was no indication of publication bias.
Whereas Wen et al.’s same three RCTs found no significant reduction in hyperactivity/impulsivity symptoms, Wang et al. combined five RCTs with 221 total participants and reported a medium effect size reduction in impulsivity symptoms. This time, there was an overlap of two RCTs between the studies. Wen et al. had no heterogeneity, while Wang et al. had moderate heterogeneity. Neither showed signs of publication bias.
Turning to performance-based tasks, Wang et al. reported a medium effect size improvement in attentional performance from tDCS over controls (three RCTs totaling 136 participants), but no improvement in inhibitory control (five RCTs combining 234 persons).
Wang et al. found no significant difference in adverse events (four RCTs combining 161 participants) between tDCS and controls, with no heterogeneity. Wen et al. found no significant difference in dropout rates (4 RCTs totaling 143 individuals), again with no heterogeneity.
Wang et al. concluded, “tDCS may improve impulsive symptoms and inattentive symptoms among ADHD patients without increasing adverse effects, which is critical for clinical practice, especially when considering noninvasive brain stimulation, where patient safety is a key concern.”
Wen et al. further concluded, “Our study supported the use of tDCS for improving the self-reported symptoms of inattention and objective attentional performance in adults diagnosed with ADHD. However, the limited number of available trials hindered a robust investigation into the parameters required for establishing a standard protocol, such as the optimal location of electrode placement and treatment frequency in this setting. Further large-scale double-blind sham-controlled clinical trials that include assessments of self-reported symptoms and performance-based tasks both immediately after interventions and during follow-up periods, as well as comparisons of the efficacy of tDCS targeting different brain locations, are warranted to address these issues.”
The Take-Away:
Previous studies have shown mixed results on the benefits of this therapy on ADHD. These new findings suggest that tDCS may hold some real promise for adults with ADHD. While the technique didn’t meaningfully shift hyperactivity or impulsivity, it was well-tolerated and showed benefit, especially in self-reported symptoms. However, with only a handful of trials to draw from, it would be a mistake to suggest tDCS as a standard treatment protocol. Larger, well-designed studies are the next essential step to clarify where, how, and how often tDCS works best.
Background:
The development of ADHD is strongly associated with functional impairments in the prefrontal cortex, particularly the dorsolateral prefrontal cortex, which plays a key role in maintaining attention and controlling impulses. Moreover, imbalances in neurotransmitters like dopamine and norepinephrine are widely regarded as major neurobiological factors contributing to ADHD.
Executive functions are a group of higher-order cognitive skills that guide thoughts and actions toward goals. “Executive function” refers to three main components: inhibitory control, working memory, and cognitive flexibility. Inhibitory control helps curb impulsive actions to stay on track. Working memory allows temporary storage and manipulation of information for complex tasks. Cognitive flexibility enables switching attention and strategies in varied or demanding situations.
Research shows that about 89% of children with ADHD have specific executive function impairments. These difficulties in attention, self-control, and working memory often result in academic and social issues. Without timely intervention, these issues can lead to emotional disorders like depression, anxiety, and irritability, further affecting both physical health and social development.
Currently, primary treatments for executive function deficits in school-aged children with ADHD include medication and behavioral or psychological therapies, such as Cognitive Behavioral Therapy (CBT). While stimulant medications do improve executive function, not all patients are able to tolerate these medications. Behavioral interventions like neurofeedback provide customized care but show variable effectiveness and require specialized resources, making them hard to sustain. Safer, more practical, and long-lasting treatment options are urgently needed.
Exercise interventions are increasingly recognized as a safe, effective way to improve executive function in children with ADHD. However, systematic studies on school-aged children remain limited.
Moreover, there are two main scoring methods for assessing executive function: positive scoring (higher values mean better performance, such as accuracy) and reverse scoring (lower values mean better performance, such as reaction time). These different methods can affect how results are interpreted and compared across studies. This meta-analysis explored how different measurement and scoring methods might influence results, addressing important gaps in the research.
The Study:
Only randomized controlled trials (RCTs) involving school-aged children (6–13 years old) diagnosed with ADHD by DSM-IV, DSM-5, ICD-10, ICD-11, or the SNAP-IV scale were included. Studies were excluded if the experimental group received non-exercise interventions or exercise combined with other interventions.
Cognitive Flexibility
Using positive scoring, exercise interventions were associated with a narrowly non-significant small effect size improvement relative to controls (eight RCTs, 268 children). Using reverse scoring, however, they were associated with a medium effect size improvement (eleven RCTs, 452 children). Variation (heterogeneity) in individual RCT outcomes was moderate, with no sign of publication bias in both instances.
Inhibitory Control
Using positive scoring, exercise interventions were associated with a medium effect size improvement relative to controls (ten RCTs, 421 children). Using reverse scoring, there was an association with a medium effect size improvement (eight RCTs, 265 children). Heterogeneity was moderate with no sign of publication bias in either case.
Working Memory
Using positive scoring, exercise interventions were associated with a medium effect size improvement relative to controls (six RCTs, 321 children). Using reverse scoring, the exercise was associated with a medium effect size improvement (five RCTs, 143 children). Heterogeneity was low with no indication of publication bias in both instances.
Conclusion:
The team concluded, “Exercise interventions can effectively improve inhibitory control and working memory in school-aged children with ADHD, regardless of whether positive or reverse scoring methods are applied. However, the effects of exercise on cognitive flexibility appear to be limited, with significant improvements observed only under reverse scoring. Moreover, the effects of exercise interventions on inhibitory control, working memory, and cognitive flexibility vary across different measurement paradigms and scoring methods, indicating the importance of considering these methodological differences when interpreting results.”
Although this work is intriguing, it does not show that exercise significantly improves the symptoms of ADHD in children. This means that exercise, although beneficial for many reasons, should not be viewed as a replacement for evidence-based treatments for the disorder.
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. More Info
By clicking, you agree to store cookies on your device to enhance navigation, analyze usage, and support marketing. More Info