March 12, 2021

Everything You Need to Know About ADHD

You've heard all sorts of misinformation about Attention-Deficit/Hyperactivity Disorder(ADHD), whether from friends, the internet, or uninformed press articles:

"ADHD is not real."

"Pharmaceutical companies invented ADHD to make money."

"I'm just a little ADD."

"Natural solutions are the best for ADHD treatment."

ADHD symptoms were first described in the late 1700s, primarily among hyperactive boys. It was described variously over 200 years as "fidgeting," "defects of moral control," "hyperkinetic reaction," "minimal brain damage" and eventually ADD (Attention Deficit Disorder) in the 1980s and ADHD today.

Because the natural tendency toward hyperactivity decreased with age, ADHD was originally thought to be a developmental disorder that disappeared in mid-to-late adolescence. When medicines were developed and used in ADHD treatment for young boys, physicians stopped prescribing them around mid-adolescence, because it was presumed the condition had been remediated. They were wrong. We know now that ADHD persists into adulthood for about two-thirds of ADHD youth.

ADHD was not widely recognized in girls until the mid-1990s when it became clear that girls with ADHD were less disruptive than boys with ADHD and were not being appropriately diagnosed. Girls with ADHD show less of the physical hyperactivity of boys, but suffer from "dreaminess," "lack of focus" and "lack of follow-through."

It was also in the 1990s that ADHD' pervasive comorbidity with depression, anxiety, mood, and autism spectrum disorders was established. At the same time, researchers were beginning to describe deficits in executive functioning and emotional dysregulation that became targets of substantial research in the 21st century.

Even with the 1990s recognition that ADHD is a lifetime disorder, equally present (in different forms) in both men and women, medical schools and continuing medical education courses (required for realizing sure of health professionals) have only begun to teach the most up-to-date evidence-based knowledge to the medical community. There still is much misinformation and a lack of knowledge among primary care professionals and the public.

ADHD Throughout the Lifespan
Most cases of ADHD start in Otero before the child is born. As a fetus, the future ADHD person carries versions of genes that increase the risk for the disorder. At the same time, they are exposed to toxic environments. These genetic and environmental risks change the developing brain, setting the foundation for the future emergence of ADHD.

In preschool, early signs of ADHD are seen in emotional lability, hyperactivity, disinhibited behavior and speech, and language and coordination problems. The full-blown ADHD syndrome typically occurs in early childhood, but can be delayed until adolescence. In some cases, the future ADHD person is temporarily protected from the emergence of ADHD due to factors such as high intelligence or especially supportive family and/or school environments. But, as the challenges of life increase, this social, emotional, and intellectual scaffolding is no longer sufficient to control the emergence of disabling ADHD symptoms.

Throughout childhood and adolescence, the emergence and persistence of the disorder are regulated by additional environmental risk factors such as family chaos, as well as the age-dependent expression of risk genes that exert different effects at different stages of development. During adolescence, most cases of ADHD persist and by the teenage years, many youths with ADHD have onset with a mood, anxiety, or substance use disorder. Indeed, parents and clinicians need to monitor ADHD youth for early signs of these disorders. Prompt treatment can prevent years of distress and disability.

By adulthood, the number of comorbid conditions increases, including obesity, which likely impacts future medical outcomes. Emerging data shows people with ADHD to be at increased risk for hypertension and diabetes. ADHD adults tend to be very inattentive but show fewer symptoms of hyperactivity and impulsivity. They remain at risk for substance abuse, low self-esteem, injuries due to accidents, occupational failure, and social disability, especially if they are not treated for the disorder.

Seven Important Concepts About ADHD


There are approximately 10 million U.S. adults with ADHD, 9 million of whom are undiagnosed. But with diligent research by the medical profession, we have learned seven important concepts about ADHD:
1.    ADHD has been documented worldwide in 5% of the population.
2.    Sixty-seven percent of ADHD children grow into ADHD adults and seniors. ADHD is heritable, runs in families, and is impacted by the physical environment and familial lifestyle.
3.    In youth, rates of ADHD are higher in males than females as males, but these rates even out by adulthood.
4.    ADHD coexists and is often masked by several other disorders: anxiety, depression, spectrum bipolar and autism disorder, substance abuse, alcoholism, obesity, risky behaviors, disorganized lives, working memory deficits, and significant executive dysfunctions that affect personal, social, and work success.
5.    ADHD medications(stimulants and non-stimulants) are the most effective treatments for ADHD symptoms. Psychological support/training designed for ADHD, and lifestyle modifications, are important adjuncts to medicine.
6.    ADHD costs the U.S. economy more than $100 million annually in lost productivity, accidents, hospitalizations with comorbidities, and family and professional support for ADHD patients.
7.    ADHD is diagnosable and safely treatable in trained primary care practices.

How do you know if you or someone you love has ADHD? Evaluate your life against the seven concepts above. Then get screened and diagnosed by a health care professional. The diagnosis of ADHD should be done only by a licensed clinician who has been trained in ADHD. That clinician should have one goal in mind: to plan a safe and effective course of evidence-based treatment.

When diagnosing adults, it is also useful to collect information from a significant other, which can be a parent for young adults or a spouse for older adults. But when such individuals are not available, diagnosing ADHD based on the patient's self-report is valid. Just remember that personal, work, and family lives are improved with treatment. Research and technology related to ADHD improve all the time.

ADHD in Adults is a great resource for anyone interested in learning more about ADHD, with evidence-based information and education for both healthcare professionals and the public. The website also features a new ADHD screener for predicting the presence of ADHD in adults.

Stephen V. Faraone, Ph.D., is a Distinguished Professor of Psychiatry and Neuroscience & Physiology at SUNY Update Medical University and a global expert on Adult ADHD.

Related posts

No items found.

Swedish Nationwide Population Study Finds Strong Association Between ADHD and Sleep Disorder Diagnoses and Sleep Medication Prescriptions

There has been consistent evidence of an association between ADHD and subjectively reported sleep problems even in patients not medicated for the disorder. There have also been studies using wrist-worn actigraphy (a wrist watch-like device that measures gross motor activity) and sleep lab-based polysomnography that measure objective sleep parameters. 

What has been missing are large population-based cohort studies to explore the prevalence rates of different sleep disorders and medical prescriptions in ADHD. 

Methods Used: 

Sweden has a single-payer health insurance system and a series of national population registers that track virtually its entire population. Using the Swedish Total Population Register, a local research team created a cohort of all 6,470,658 persons born between 1945 and 2008. They linked this to the Swedish National Patient Register, which includes inpatient hospitalizations from 1975 to 2013, and outpatient specialist diagnoses from 2001 to 2013, to identify diagnoses of sleep disorders. They also linked to the Prescribed Drug Register, covering 2005 to 2013, to identify prescriptions for sleep medications. 

Summary of Findings: 

Overall, persons with ADHD were eight times more likely to be diagnosed with any sleep disorder relative to normally developing peers. Broken down by age, adolescents with ADHD were 16 times more likely to receive such diagnoses, young adults (18-30) twelve times more likely, children and mid-age adults (31-45) eight times more likely, and older adults six times more likely. 

Broken down by specific sleep disorder diagnoses, relative to normally developing peers, persons with ADHD were: 

  • Five times more likely to have sleep terrors and seven times more likely to have nightmares. 
  • Six times more likely to sleepwalk. 
  • Seven times more likely to have restless leg syndrome. 
  • Sixteen times more likely to have insomnia. 
  • Nineteen times more likely to have disorders of sleep/wake schedule (circadian rhythms). 
  • Twenty times more likely to have hypersomnia (excessive sleeping). 
  • Over seventy times more likely to exhibit narcolepsy (daytime sleepiness) and cataplexy (sudden loss of muscle tone leading to collapse). 

As for sleep medication, relative to normally developing peers, persons with ADHD were: 

  • Seven times more likely to be prescribed the hypnotic zolpidem (Ambien). 
  • Eight times more likely to be prescribed the hypnotic zopiclone or the antihistamine propriomazine. 
  • Ten times more likely to be prescribed the sedative and hypnotic zaleplon (Sonata). 
  • Fourteen times more likely to be prescribed any sleep medication. 
  • 37 times more likely to be prescribed melatonin, the body’s natural sleep-inducing hormone, which is a prescription medication in Europe. 

Conclusion: 

The team concluded, “Our findings also suggest that greater clinical attention should be directed towards addressing sleep problems in individuals with ADHD. This entails implementing proactive measures through sleep education programmes and providing both pharmacological and non-pharmacological approaches such as cognitive behavioural therapy and parental sleep training.” 

December 12, 2024

Effect of Physical Activity on Attention in School-age Children with ADHD: Systematic Review and Meta-Analysis

Overview

Attention is a critical determinant of academic achievement, influencing domains such as language, literacy, and mathematics. To explore whether physical activity can improve attention in children with ADHD, an international team conducted a meta-analysis of peer-reviewed studies. The goal was to evaluate the impact of various physical activity regimens on attention-related outcomes in this population.

Methods

The researchers performed a comprehensive search of the medical literature to identify studies examining the effects of physical activity on attention in schoolchildren with ADHD. They included 10 studies with a total of 474 participants in their meta-analysis. The studies evaluated two main types of physical activity:

  • Mentally engaging physical activities
  • Aerobic exercise

Additionally, they examined variations based on the frequency, duration, and type of control groups used in the studies. To assess consistency, they also analyzed heterogeneity (variability of outcomes) and checked for potential publication bias.

Summary

Key findings from the meta-analysis include:

  1. Effectiveness of Mentally Engaging Activities:some text
    • Seven studies (168 participants) involving mentally engaging physical activities showed large reductions in attention problems.
    • Heterogeneity was significantly reduced for these studies.
  2. Effectiveness of Aerobic Exercise:some text
    • Three studies (306 participants) using aerobic exercise alone found no improvements in attention.
  3. Impact of Control Groups:some text
    • Studies with no intervention as a control group (4 studies, 81 participants) reported large improvements in attention problems.
    • Those comparing physical activity with other interventions (6 studies, 393 participants) found only small improvements.
  4. Frequency and Duration:some text
    • Duration of physical activity made little difference. Studies with sessions of an hour or more had slightly better outcomes, but the difference was not significant.
    • Surprisingly, lower frequency was more effective:some text
      • One to two sessions per week (7 studies, 162 participants) led to large reductions in attention problems.
      • Three or more sessions per week (3 studies, 312 participants) showed no improvement.
Conclusion

The authors concluded that mentally engaging exercise is more effective than aerobic exercise in improving attention problems in schoolchildren with ADHD. Furthermore, higher frequency and longer duration of physical activity do not necessarily yield better outcomes.

This research underscores the importance of tailoring physical activity interventions to emphasize cognitive engagement over intensity or duration. By refining strategies, educators and parents can better support children with ADHD in achieving academic success.   But take note:  given the results from controlled studies, it seems clear that if there is a positive effect of exercise, it is very small so should not replace standard treatments for ADHD.  

NEWS TUESDAY: How Stimulant Use in Childhood ADHD May Impact Brain Connectivity and Symptom Improvement

Previous studies have examined how stimulant medications affect the brain in controlled settings, but less is known about their impact in real-world conditions, where children may not always take their medication consistently or may combine it with other treatments. A new study leverages data from the Adolescent Brain Cognitive Development (ABCD) study to explore how real-world stimulant use impacts brain connectivity and ADHD symptoms over two years.

Changes in Brain Connectivity Researchers used brain imaging data from the ABCD study to examine the functional connectivity—communication between brain areas—of six regions within the striatum, a brain area involved in motivation and movement control. They focused on how stimulant use influenced connectivity between the striatum and other networks involved in executive functioning and visual-motor control.

The study found that stimulant exposure was linked to reduced connectivity between key striatal areas (such as the caudate and putamen) and large brain networks, including the frontoparietal and visual networks. These changes were more pronounced in children taking stimulants compared to those who were not medicated, as well as compared to typically developing children. Importantly, this reduction in connectivity seemed to regulate certain brain networks that are typically altered in children with ADHD.

Symptom Improvement In addition to brain changes, 14% of children taking stimulants experienced a significant reduction in ADHD symptoms over the two-year period. These children showed the strongest connectivity reductions between the right putamen and the visual network, suggesting that stimulant-induced connectivity changes may contribute to improvements in visual attentional control, which is a common challenge for children with ADHD.

Why This Matters This study is one of the first to examine how stimulant use in real-world conditions affects brain networks in children with ADHD over time. The findings suggest that stimulants may help normalize certain connectivity patterns associated with ADHD, particularly in networks related to attention and control. These insights could help clinicians better understand the potential long-term effects of stimulant treatment and guide personalized approaches to ADHD management.

Conclusion Stimulant medications appear to alter striatal-cortical connectivity in children with ADHD, with some changes linked to symptom improvement. This research highlights the potential for stimulant medications to impact brain networks in ways that support attention and control, highlighting the importance of understanding how real-world medication use influences ADHD treatment outcomes.

December 3, 2024