August 25, 2021

Are there adverse effects to long-term treatment of ADHD with methylphenidate?

Methylphenidate (MPH) is one of the most widely-prescribed medications for children. Given that ADHD frequently persists over a large part of an individual's lifespan, any side effects of medication initiated during childhood may well be compounded over time. With funding from the European Union, a recently released review of the evidence looked for possible adverse neurological and psychiatric outcomes.

From the outset, the international team recognized a challenge: ADHD severity may be an important potential confounder, as it may be associated with both the need for long-term MPH therapy and high levels of underlying neuropsychiatric comorbidity. Their searches found a highly heterogeneous evidence base, which made meta-analysis inadvisable. For example, only 25 of 39 group studies reported the presence or absence of comorbid psychiatric conditions, and even among those, only one excluded participants with comorbidities. Moreover, in only 24 of 67 studies was the type of MPH used (immediate or extended-release) specified. The team, therefore, focused on laying out an evidence map to help determine priorities for further research.

The team found the following breakdown for specific types of adverse events:

·        Low mood/depression. All three non-comparative studies found MPH safe. Two large cohort studies, one with over 2,300 participants, and the other with 142,000, favored MPH over the non-stimulant atomoxetine. But many other studies, including a randomized controlled trial (RCT), had unclear results. Conclusion: the evidence base regarding mood outcomes from long-term MPH treatment is relatively strong, includes two well-powered comparative studies, and tends to favor MPH.

·        Anxiety. Here again, all three non-comparative studies found MPH safe. But only two of seven comparative studies favored MPH, with the other five having unclear results. Conclusion: while the evidence about anxiety as an outcome of long-term MPH treatment tends to favor MPH, the evidence base is relatively weak.

·        Irritability/emotional reactivity. A large cohort study with over 2,300 participants favored MPH over atomoxetine. Conclusion: the evidence base is limited, although it includes one well-powered study that found in favor of MPH over atomoxetine.

·        Suicidal behavior/ideation. There were no non-comparative studies, but all five comparative studies favored MPH. That included three large cohort studies, with a combined total of over a hundred thousand participants, that favored MPH over atomoxetine. Conclusion: the evidence base is relatively strong, and tends to favor MPH.

·        Bipolar disorder. A very large cohort study, with well over a quarter-million participants, favored MPH over atomoxetine. A much smaller cohort study comparing MPH with atomoxetine, with less than a tenth the number of participants, pointed toward caution. Conclusion: the evidence base is limited and unclear, although it includes two well-powered studies.

·        Psychosis/psychotic-like symptoms. By far the largest study, with over 145,000 participants, compared MPH with no treatment, and pointed toward caution. A cohort study with over 2,300 participants favored MPH over atomoxetine. Conclusion: These findings indicate that more research is needed into the relationship between ADHD and psychosis, and into whether MPH moderates that risk, as well as research into individual risk factors for MPH-related psychosis in young people with ADHD.

·        Substance use disorders. A cohort study with over 20,000 participants favored MPH over anti-depressants, anti-psychotics, and no medication. Other studies looking at dosages and durations of treatment, age at treatment initiation, or comparing with no treatment or alternative treatment, all favored MPH except a single study with unclear results. Conclusion: the evidence base is relatively strong, includes one well-powered study that compared MPH with antipsychotic and antidepressant treatment, and tends to favor MPH.

·        Tics and other dyskinetic. Of four non-comparative studies, three favored MPH, the other, with the smallest sample size, urged caution. In studies comparing with dexamphetamine, pemoline, Adderall, or no active treatment, three had unclear results and two pointed towards caution. Conclusion: more research is needed regarding the safety and management of long-term MPH in those with comorbidities or tic disorder.

·        Seizuresor EEG abnormalities. With one exception, the studies had small sample sizes. The largest, with over 2,300 participants, compared MPH with atomoxetine, with inconclusive results. Two small studies found MPH safe, one had unclear results, and two others pointed towards caution. Conclusion: While the evidence is limited and unclear, the studies do not indicate evidence for seizures as an AE of MPH treatment in children with no prior history more research is needed into the safety of long-term MPH in children and young people at risk of seizures.

·        Sleep Disorders. All three non-comparative studies found MPH safe, but the largest cohort study, with over 2,300 participants, clearly favored atomoxetine. Conclusion: more research is needed into the relationship between ADHD, sleep, and long-term MPH treatment.

·        Other notable psychiatric outcomes. Two noncomparative studies, with 118 and 289participants, found MPH safe. A cohort study with over 700 participants compared with atomoxetine, with inconclusive results. Conclusion: there is limited evidence regarding long-term MPH treatment and another neuropsychiatric outcome, and that further research may be needed into the relationship between long-term MPH treatment and aggression/hostility.

Although this landmark review points to several gaps sins in the evidence base, it mainly supports prior conclusions of the US Food antidrug Administration (FDA) and other regulatory agencies (based on short-term randomized controlled trials) that MPH is safe for the treatment of ADHD in children and adults.  Given that MPH has been used for ADHD for over fifty years and that the FDA monitors the emergence of rare adverse events, patients, parents, and prescribers can feel confident that the medication is safe when used as prescribed.

Helga Krinzinger, Charlotte L Hall, Madeleine JGroom, Mohammed T Ansari, Tobias Banaschewski, Jan K Buitelaar, Sara CarucciDavid Coghill, Marina Danckaerts, Ralf W Dittmann, Bruno Falissard, PeterGaras, Sarah K Inglis, Hanna Kovshoff, Puja Kochhar, Suzanne McCarthy, PeterNagy, Antje Neubert, Samantha Roberts, Kapil Sayal, Edmund Sonuga-Barke , Ian CK Wong , Jun Xia, Alexander Zuddas, Chris Hollis, Kerstin Konrad, Elizabeth Biddle and the ADDUCE Consortium,Neurological and psychiatric adverse effects of long-term methylphenidate treatment in ADHD: A map of the current evidence, Neuroscience and Biobehavioral Reviews(2019)DOI:https://doi.org/10.1016/j.neubiorev.2019.09.023

Related posts

No items found.

Swedish Nationwide Population Study Finds Strong Association Between ADHD and Sleep Disorder Diagnoses and Sleep Medication Prescriptions

There has been consistent evidence of an association between ADHD and subjectively reported sleep problems even in patients not medicated for the disorder. There have also been studies using wrist-worn actigraphy (a wrist watch-like device that measures gross motor activity) and sleep lab-based polysomnography that measure objective sleep parameters. 

What has been missing are large population-based cohort studies to explore the prevalence rates of different sleep disorders and medical prescriptions in ADHD. 

Methods Used: 

Sweden has a single-payer health insurance system and a series of national population registers that track virtually its entire population. Using the Swedish Total Population Register, a local research team created a cohort of all 6,470,658 persons born between 1945 and 2008. They linked this to the Swedish National Patient Register, which includes inpatient hospitalizations from 1975 to 2013, and outpatient specialist diagnoses from 2001 to 2013, to identify diagnoses of sleep disorders. They also linked to the Prescribed Drug Register, covering 2005 to 2013, to identify prescriptions for sleep medications. 

Summary of Findings: 

Overall, persons with ADHD were eight times more likely to be diagnosed with any sleep disorder relative to normally developing peers. Broken down by age, adolescents with ADHD were 16 times more likely to receive such diagnoses, young adults (18-30) twelve times more likely, children and mid-age adults (31-45) eight times more likely, and older adults six times more likely. 

Broken down by specific sleep disorder diagnoses, relative to normally developing peers, persons with ADHD were: 

  • Five times more likely to have sleep terrors and seven times more likely to have nightmares. 
  • Six times more likely to sleepwalk. 
  • Seven times more likely to have restless leg syndrome. 
  • Sixteen times more likely to have insomnia. 
  • Nineteen times more likely to have disorders of sleep/wake schedule (circadian rhythms). 
  • Twenty times more likely to have hypersomnia (excessive sleeping). 
  • Over seventy times more likely to exhibit narcolepsy (daytime sleepiness) and cataplexy (sudden loss of muscle tone leading to collapse). 

As for sleep medication, relative to normally developing peers, persons with ADHD were: 

  • Seven times more likely to be prescribed the hypnotic zolpidem (Ambien). 
  • Eight times more likely to be prescribed the hypnotic zopiclone or the antihistamine propriomazine. 
  • Ten times more likely to be prescribed the sedative and hypnotic zaleplon (Sonata). 
  • Fourteen times more likely to be prescribed any sleep medication. 
  • 37 times more likely to be prescribed melatonin, the body’s natural sleep-inducing hormone, which is a prescription medication in Europe. 

Conclusion: 

The team concluded, “Our findings also suggest that greater clinical attention should be directed towards addressing sleep problems in individuals with ADHD. This entails implementing proactive measures through sleep education programmes and providing both pharmacological and non-pharmacological approaches such as cognitive behavioural therapy and parental sleep training.” 

December 12, 2024

Effect of Physical Activity on Attention in School-age Children with ADHD: Systematic Review and Meta-Analysis

Overview

Attention is a critical determinant of academic achievement, influencing domains such as language, literacy, and mathematics. To explore whether physical activity can improve attention in children with ADHD, an international team conducted a meta-analysis of peer-reviewed studies. The goal was to evaluate the impact of various physical activity regimens on attention-related outcomes in this population.

Methods

The researchers performed a comprehensive search of the medical literature to identify studies examining the effects of physical activity on attention in schoolchildren with ADHD. They included 10 studies with a total of 474 participants in their meta-analysis. The studies evaluated two main types of physical activity:

  • Mentally engaging physical activities
  • Aerobic exercise

Additionally, they examined variations based on the frequency, duration, and type of control groups used in the studies. To assess consistency, they also analyzed heterogeneity (variability of outcomes) and checked for potential publication bias.

Summary

Key findings from the meta-analysis include:

  1. Effectiveness of Mentally Engaging Activities:some text
    • Seven studies (168 participants) involving mentally engaging physical activities showed large reductions in attention problems.
    • Heterogeneity was significantly reduced for these studies.
  2. Effectiveness of Aerobic Exercise:some text
    • Three studies (306 participants) using aerobic exercise alone found no improvements in attention.
  3. Impact of Control Groups:some text
    • Studies with no intervention as a control group (4 studies, 81 participants) reported large improvements in attention problems.
    • Those comparing physical activity with other interventions (6 studies, 393 participants) found only small improvements.
  4. Frequency and Duration:some text
    • Duration of physical activity made little difference. Studies with sessions of an hour or more had slightly better outcomes, but the difference was not significant.
    • Surprisingly, lower frequency was more effective:some text
      • One to two sessions per week (7 studies, 162 participants) led to large reductions in attention problems.
      • Three or more sessions per week (3 studies, 312 participants) showed no improvement.
Conclusion

The authors concluded that mentally engaging exercise is more effective than aerobic exercise in improving attention problems in schoolchildren with ADHD. Furthermore, higher frequency and longer duration of physical activity do not necessarily yield better outcomes.

This research underscores the importance of tailoring physical activity interventions to emphasize cognitive engagement over intensity or duration. By refining strategies, educators and parents can better support children with ADHD in achieving academic success.   But take note:  given the results from controlled studies, it seems clear that if there is a positive effect of exercise, it is very small so should not replace standard treatments for ADHD.  

NEWS TUESDAY: How Stimulant Use in Childhood ADHD May Impact Brain Connectivity and Symptom Improvement

Previous studies have examined how stimulant medications affect the brain in controlled settings, but less is known about their impact in real-world conditions, where children may not always take their medication consistently or may combine it with other treatments. A new study leverages data from the Adolescent Brain Cognitive Development (ABCD) study to explore how real-world stimulant use impacts brain connectivity and ADHD symptoms over two years.

Changes in Brain Connectivity Researchers used brain imaging data from the ABCD study to examine the functional connectivity—communication between brain areas—of six regions within the striatum, a brain area involved in motivation and movement control. They focused on how stimulant use influenced connectivity between the striatum and other networks involved in executive functioning and visual-motor control.

The study found that stimulant exposure was linked to reduced connectivity between key striatal areas (such as the caudate and putamen) and large brain networks, including the frontoparietal and visual networks. These changes were more pronounced in children taking stimulants compared to those who were not medicated, as well as compared to typically developing children. Importantly, this reduction in connectivity seemed to regulate certain brain networks that are typically altered in children with ADHD.

Symptom Improvement In addition to brain changes, 14% of children taking stimulants experienced a significant reduction in ADHD symptoms over the two-year period. These children showed the strongest connectivity reductions between the right putamen and the visual network, suggesting that stimulant-induced connectivity changes may contribute to improvements in visual attentional control, which is a common challenge for children with ADHD.

Why This Matters This study is one of the first to examine how stimulant use in real-world conditions affects brain networks in children with ADHD over time. The findings suggest that stimulants may help normalize certain connectivity patterns associated with ADHD, particularly in networks related to attention and control. These insights could help clinicians better understand the potential long-term effects of stimulant treatment and guide personalized approaches to ADHD management.

Conclusion Stimulant medications appear to alter striatal-cortical connectivity in children with ADHD, with some changes linked to symptom improvement. This research highlights the potential for stimulant medications to impact brain networks in ways that support attention and control, highlighting the importance of understanding how real-world medication use influences ADHD treatment outcomes.

December 3, 2024