April 9, 2025

From Meds to Mindfulness: What Actually Works for Adult ADHD?

A new large-scale study has shed light on which treatments for attention-deficit/hyperactivity disorder (ADHD) in adults are most effective and best tolerated. 

Researchers analyzed 113 randomized controlled trials involving nearly 15,000 adults diagnosed with ADHD. These studies included medications (like stimulants and atomoxetine), psychological therapies (such as cognitive behavioral therapy), and newer approaches like neurostimulation.

The Findings

Stimulant medications (lisdexamfetamine and methylphenidate) as well as selective norepinephrine reuptake inhibitors (SNRI) (atomoxetine) were the only treatments that consistently reduced core ADHD symptoms—both from the perspective of patients and clinicians. It may be worth noting that atomoxetine, while effective, was less well tolerated, with more people dropping out due to side effects.

Psychological therapies such as CBT, mindfulness, and psychoeducation showed some benefits, but mainly according to clinician ratings—not necessarily from the patients themselves. Neurostimulation techniques like transcranial direct current stimulation also showed some improvements, but only in limited contexts and with small sample sizes.  

Conclusion 

So, what does this mean for people navigating ADHD in adulthood? Stimulant medications remain the most effective treatment for managing ADHD symptoms day-to-day but nonstimulant medication are not far behind, which is good given the problems we’ve had with stimulant shortages. This study also supports structured psychotherapy as a viable treatment option, especially when used in conjunction with medication. 

The study emphasizes the importance of ongoing, long-term research and the need for treatment plans that are tailored to the individual ADHD patient– Managing adult ADHD effectively calls for flexible, patient-centered care.

-----

Struggling with side effects or not seeing improvement in your day-to-day life? Dive into a step-by-step journey that starts with the basics of screening and diagnosis, detailing the clinical criteria healthcare professionals use so you can be certain you receive an accurate evaluation. This isn’t just another ADHD guide—it’s your toolkit for getting the care you deserve. This is the kind of care that doesn’t just patch up symptoms but helps you unlock your potential and build the life you want. Whether you’ve just been diagnosed or you’ve been living with ADHD for years, this booklet is here to empower you to take control of your healthcare journey.

Proceeds from the sale of this book are used to support www.ADHDevidence.org.

Get the guide now– Navigating ADHD Care: A Practical Guide for Adults

Ostinelli EG, Schulze M, Zangani C, Farhat LC, Tomlinson A, Del Giovane C, Chamberlain SR, Philipsen A, Young S, Cowen PJ, Bilbow A, Cipriani A, Cortese S. Comparative efficacy and acceptability of pharmacological, psychological, and neurostimulatory interventions for ADHD in adults: a systematic review and component network meta-analysis. Lancet Psychiatry. 2025 Jan;12(1):32-43. doi: 10.1016/S2215-0366(24)00360-2. PMID: 39701638.

Related posts

Are Nonpharmacologic Treatments for ADHD Useful?

Are Nonpharmacologic Treatments for ADHD Useful?

There are several very effective drugs for ADHD, and those treatment guidelines from professional organizations view these drugs as the first line of treatment for people with ADHD. The only exception is for preschool children where medication is only the first line of treatment for severe ADHD; the guidelines recommend that other preschoolers with ADHD be treated with non-pharmacologic treatments, when available. Despite these guidelines, some parents and patients have been persuaded by the media or the Internet that ADHD drugs are dangerous and that non-drug alternative are as good or even better. Parents and patients may also be influenced by media reports that doctors overprescribe ADHD drugs or that these drugs have serious side effects. Such reports typically simplify and/or exaggerate results from the scientific literature. Thus, many patients and parents of ADHD children are seeking non-drug treatments for ADHD. What are these non-pharmacologic treatments and do they work? My next series of blogs will discuss each of these treatments in detail. Here I'll give an overview of my evidenced-based taxonomy of non-pharmacologic treatments for ADHD described in more detail in a book I recently edited (Faraone, S. V. &Antshel, K. M. (2014). ADHD: Non-Pharmacologic Interventions. Child Adolesc Psychiatry Clin N Am 23, xiii-xiv.). I use the term "evidence-based" in the strict sense applied by the Oxford Center for Evidenced Based Medicine (OCEBM; http://www.cebm.net/). Most of the non-drug treatments for ADHD fall into three categories: behavioral, dietary, and neurocognitive. Behavioral interventions include training parents to optimize methods of reward and punishment for their ADHD child, teaching ADHD children social skills, and helping teachers apply principles of behavior management in their classrooms. Cognitive behavior therapy is a method that teaches behavioral and cognitive skills to adolescent and adult ADHD patients. Dietary interventions include special diets that exclude food coloring or eliminate foods believed to cause ADHD symptoms. Other dietary interventions provide supplements such as iron, zinc, or omega-3 fatty acids.  The neurocognitive interventions typically use a computer-based learning setup to teach ADHD patients cognitive skills that will help reduce ADHD symptoms. There are two metrics to consider when thinking about the evidence base for these methods. The first is the quality of the evidence. For example, a study of 10 patients with no control group would be a low-quality study, but a study of 100 patients randomized to either a treatment or control group would be of high quality and the quality would be even higher if the people's rating patient outcomes did not know who was in each group. The second metric is the magnitude of the treatment effect. Does the treatment dramatically reduce ADHD symptoms, or does it have only a small effect? This metric is only available for high-quality studies that compare people treated with the method and people treated with a 'control' method that is not expected to affect ADHD. I used a statistical metric to quantify the magnitude of the effect. Zero means no effect, and larger numbers indicate better effects on treating ADHD symptoms. For comparison, the effect of stimulant drugs for ADHD is about 0.9, which is derived from a very strong evidence base.  The effects of dietary treatments are smaller, about 0.4 to 0.5, but because the quality of the evidence is not strong, these results are not certain and the studies of food color exclusions apply primarily to children who have high intakes of such colorants. In contrast to the dietary studies, the evidence base for behavioral treatments is excellent, but the effects of these treatments on ADHD symptoms are very small, less than 0.1.  Supplementation with omega-3 fatty acids also has a strong evidence base, but the magnitude of the effect is also small (0.1 to 0.2). The neurocognitive treatments have modest effects on ADHD symptoms (0.2 to 0.4) but their evidence base is weak. This review of non-drug treatments explains why ADHD drug treatments are usually used first. The evidence base is stronger, and they are more effective in reducing ADHD symptoms. There is, however, a role for some non-drug treatments. I'll be discussing that in subsequent blog posts. See more evidence-based information about ADHD at www.adhdinadults.com

May 17, 2021

ADHD Treatment Decision Tree

ADHD Treatment Decision Tree

If you've ever wondered how experts make treatment recommendations for patients with ADHD, take a look at this ADHD treatment decision tree that my colleagues and I constructed for our "Primer" about ADHD,http://rdcu.be/gYyV.  

Although a picture is worth a thousand words, keep in mind that this infographic only gives the bare bones of a complex process. That said, it is telling that one of the first questions an expert asks is if the patient has a comorbid condition that is more severe than ADHD. The general rule is to treat the more severe disorder first and after that condition has been stabilized plan a treatment approach for the other condition. Stimulants are typically the first-line treatment due to their greater efficacy compared with non-stimulants.

When considering any medication treatment for ADHD safety is the first concern, which is why medical contraindications to stimulants, such as cardiovascular issues or concerns about substance abuse, must be considered. For very young children (preschoolers) family behavior therapy is typically used before medication. Clinicians also must deal with personal preferences.  Some parents and some adolescents and adults with ADHD simply don't want to take stimulant medications for the disorder. When that happens, clinicians should do their best to educate them about the costs and benefits of stimulant treatment.

If, as is the case for most patients, the doctor takes the stimulant arm of the decision tree, he or she must next decide if methylphenidate or amphetamine is more appropriate. Here there is very little guidance for doctors. Amphetamine compounds are a bit more effective, but can lead to greater side effects.  Genetic studies suggest that a person's genetic background provides some information about who will respond well to methylphenidate, but we are not yet able to make very accurate predictions. After choosing the type of stimulant, the doctor must next consider what duration of action is appropriate for each patient.

There is no simple rule here; the choice will depend upon the specific needs of each patient. Many children benefit from longer-acting medications to get them through school, homework, and late afternoon/evening social activities. Likewise for adults. But many patients prefer shorter-acting medications, especially as these can be used to target specific times of day and can also lower the burden of side effects.  

For patients taking down the non-stimulant arm of the decision tree, duration is not an issue but the patient and doctor must choose from among two classes of medications norepinephrine reuptake inhibitors or alpha-2-agonists. There are not a lot of good data to guide this decision but, again, genetics can be useful in some cases. Regardless of whether the first treatment is a stimulant or a non-stimulant, the patient's response must be closely monitored as there is no guarantee that the first choice of medication will work out well. In some cases, efficacy is low, or adverse events are high. Sometimes this can be fixed by changing the dose, and sometimes a trial of a new medication is indicated.

If you are a parent of a child with ADHD or an adult with ADHD, this trial-and-error approach can be frustrating. But don't lose hope. In the end, most ADHD patients find a dose and a medication that works for them. Last but not least, when medication leads to a partial response, even after adjusting doses and trying different medication types, doctors should consider referring the patient for a non-pharmacologic ADHD treatment.

You can read details about these in my other blogs, but here the main point is to find an evidence-based treatment. For children, the biggest evidence base is for behavioral family therapy. For adults, cognitive behavior therapy (CBT) is the best choice.  Except for preschoolers, the experts I worked with on this infographic did not recommend these therapies before medication treatment. The reason is that the medications are much more effective, and many non-pharmacologic treatments (such as CBT) have no data indicating they work well in the absence of medication.

April 3, 2021

Mindfulness-Based Cognitive Therapy for Adults with ADHD

Mindfulness-Based Cognitive Therapy for Adults with ADHD

A Dutch study compared the efficacy of mindfulness-based cognitive therapy (MBCT) combined with treatment as usual (TAU), with TAU-only as the control group. MBCT consisted of an eight-week group therapy consisting of meditation exercises (body scan, sitting meditation, mindful movement), psychoeducation about ADHD, and group exercises. TAU consisted of usual treatment in the Netherlands, including medications and other psychological treatments. Sixty individuals were randomly assigned to each group. MBCT was taught in subgroups of 8 to 12 individuals. Patients assigned to TAU were not brought together in small groups. Baseline demographic and clinical characteristics were closely matched for both groups.

Outcomes were evaluated at the start, immediately following treatment, and again after 3 and 6 months using well-validated rating scales. Following treatment, the MBCT + TAU group outperformed the TAU group by an average of 3.4points on the Conner's Adult Rating Scale, corresponding to a standardized mean difference of .41. Thirty-one percent of the MBCT + TAU group made significant gains, versus 5% of the TAU group. 27% of MBCT +TAU patients scored a symptom reduction of at least 30 percent, as opposed to only 4% of TAU patients. Three and six-month follow-up effects were stable, with an effect size of .43.

The authors concluded, "that MBCT has significant benefits to adults with ADHD up to 6 months after post-treatment, about both ADHD symptoms and positive outcomes." Yet in their section on limitations, they overlook a potentially important one. There was no active placebo control. Those who were undergoing TAU-only were aware that they were not doing anything different from what they had been doing before the study. Hence, no substantial placebo response would be expected from this group during the intervention period (post-treatment they were offered an opportunity to undergo MBCT). Moreover, MBCT + TAU participants were gathered into small groups, whereas TAU participants were not. We, therefore, have no way of knowing what effect group interaction had on the outcomes because it was not controlled for. So, although these results are intriguing and suggest that further research is worthwhile, the work is not sufficiently rigorous to definitively conclude that MBCT should be prescribed for adults with ADHD.

June 8, 2021

Population Study Finds Strong Association Between Assisted Reproductive Technologies and Offspring ADHD

Taiwanese Nationwide Population Study Finds Strong Association Between Assisted Reproductive Technologies and Offspring ADHD

Background: 

Since the first in vitro fertilization (IVF) in 1978, assisted reproductive technology (ART) has led to over 10 million births worldwide.  

There are four types of embryo transfers, depending on whether they are fresh or frozen, and on their developmental stage. 

Fresh cleavage stage embryos are transferred on day 2 or 3 following fertilization and typically contain four to eight relatively large, undifferentiated cells. Fresh blastocyst embryos are transferred on day 5 or 6 after fertilization. At this point, they have developed over a hundred cells and have differentiated into two types: the inner cell mass, which develops into the fetus, and the outer cell layer, which forms the placenta. 

Globally, more children are now born through assisted reproductive technology using frozen-thawed embryo transfer than fresh embryo transfer.  

Research suggests that ART-conceived offspring may face increased risks of cardiovascular, musculoskeletal, chromosomal, urogenital diseases, and cancers. Might they also be at increased risk for ADHD? 

Study:

Taiwan’s single-payer health insurance covers over 99% of people and records all their healthcare activity. Since 1998, it has kept an ART database for all couples registered for IVF treatment. 

A Taiwanese research team reviewed all records for the five-year period from 2013 through 2017, ultimately analyzing 3,125 live singleton births from fresh cleavage stages, 1,332 from fresh blastocysts, 1,465 from frozen cleavage stages, and 4,708 from frozen blastocysts, alongside 878,643 naturally conceived singleton births. 

The team controlled for the following potential confounders: pregnancy-induced hypertension, chronic hypertension, diabetes mellitus, gestational diabetes mellitus, unhealthy lifestyle, placenta previa, placenta abruption, preterm premature rupture of membrane, and postpartum hemorrhage. 

Results:

With these adjustments, cleavage stage embryo transfers, whether fresh or frozen, were associated with a seven-fold higher rate of ADHD diagnosis in offspring than natural conception. 

Frozen blastocyst embryo transfers were likewise linked to a seven-fold increase in ADHD diagnoses in offspring compared to natural conception. Notably, fresh blastocyst transfers showed a 19-fold increase, likely due to the smaller number of cases in this category. 

The team concluded, “Compared to natural conception, ART is associated with higher risks, particularly for preterm birth, ADHD, and developmental delay.” 

Conclusion: 

This large national cohort suggests that ART-conceived singletons face higher rates of several adverse outcomes, including preterm birth, ADHD, and developmental delay. Clinicians and prospective parents should therefore weigh these potential associations when counseling and planning care, prioritize optimized ART protocols and perinatal management, and ensure early developmental surveillance for ART-conceived children so concerns can be identified and addressed promptly.

It is important to note that the findings also point to the likely contribution of underlying parental infertility in these developmental outcomes. Future research should aim to disentangle parental- versus procedure-related risks to clarify absolute risk magnitudes. As always, associations of this time should not be interpreted as causal due to the inability of observational studies to rule out all possible confounding factors.

October 1, 2025

Why Do So Many Young People Miss an ADHD Diagnosis? Insights from a New Study

Attention-Deficit/Hyperactivity Disorder (ADHD) is one of the most common neurodevelopmental conditions, yet many young people, especially girls, receive a diagnosis late or not at all. This matters, because a delayed diagnosis often means missed opportunities for support, treatment, and improved long-term outcomes. A recent study by Barclay and colleagues (2024) sheds new light on why ADHD recognition is inconsistent, and what we can do about it.

The Study:

Researchers analyzed data from nearly 10,000 children in the UK Millennium Cohort Study. They compared children whose ADHD was recognized early (ages 5–7), later (ages 11–14), or not recognized at all, despite evidence of symptoms. The team also looked at differences between boys and girls to better understand why diagnosis patterns vary by sex.

Key Findings:
  1. Severity Drives Earlier Recognition
    Children who were diagnosed at a younger age often had more visible difficulties: emotional outbursts, peer conflict, conduct issues, and lower cognitive scores. In other words, the “louder” and more disruptive the symptoms, the more likely ADHD was flagged early.

  2. “Quieter” ADHD May Be Overlooked
    Children with stronger prosocial skills or higher cognitive ability were less likely to be recognized, even if they had clear ADHD symptoms. These children may be able to “mask” their difficulties, or adults may misinterpret their struggles as personality quirks rather than signs of ADHD.

  3. Emotional Dysregulation Matters
    Emotional dysregulation—big swings in mood, difficulty calming down, intense frustration—was strongly linked to recognized ADHD in boys, but not in girls. This suggests that clinicians may pay closer attention to these behaviors in boys, while overlooking them in girls.

  4. Co-occurring Conditions Can Influence Diagnosis
    Children with autism were more likely to have their ADHD identified. On the flip side, those who engaged in more physical activity were slightly less likely to be recognized, though the reasons for this are not yet clear.

What This Means for Clinicians:

The study highlights the importance of looking beyond the “classic” hyperactive child stereotype when considering ADHD. Clinicians should:

  • Pay attention to symptoms of emotional dysregulation, even if they are not part of standard diagnostic checklists.

  • Consider ADHD in children with good grades or strong social skills if other symptoms are present.

  • Be mindful of gender differences, since girls may be more likely to internalize symptoms or present with inattentiveness rather than hyperactivity.

What This Means for Parents and Patients:

If you’re a parent, it’s important to trust your observations. If your child struggles with focus, organization, or emotional regulation—even if they are doing well academically or socially—these could still be signs of ADHD. Advocating for an evaluation can make a big difference.

Moving Forward

This study makes clear that ADHD is not one-size-fits-all. Recognition often depends on how symptoms show up, how disruptive they appear, and even the child’s gender. By broadening our awareness and refining our screening practices, we can ensure that fewer children slip through the cracks and more receive the support they need early in life.

September 30, 2025

ADHD Medication and Academic Achievement: What Do We Really Know?

Parents and teachers often ask: Does ADHD medication actually improve grades and school performance? The answer is: yes, but with important limitations. Medications are very effective at reducing inattention, hyperactivity, and impulsivity but their impact on long-term academic outcomes like grades and test scores is not as consistent.

In the Classroom

The medications for ADHD consistently: Improve attention, reduce classroom disruptions, increase time spent on-task and help children complete more schoolwork and homework. Medication can help children with ADHD access learning by improving the conditions for paying attention and persisting with work.

Does Medication Improve Test Scores and Grades?

This is where the picture gets more complicated.  Medications have  stronger effect on how much work is completed but a weaker effect on accuracy. Many studies show that children on medication attempt more problems in reading, math, and spelling, but the number of correct answers doesn’t always improve as much. Some studies find small but significant improvements in national exam scores and higher education entrance tests during periods when children with ADHD are medicated.

Grades improve, as well, but modestly. Large registry studies in Sweden show that students who consistently take medication earn higher grades than those who don’t. However, these gains usually do not close the achievement gap with peers who do not have ADHD.

Keep in mind that small improvements for a group as a whole mean that some children are benefiting greatly from medication and others not at all.  We have no way of predicting which children will improve and which do not. 

Medication Alone Isn’t Enough

Academic success depends on more than just reducing inattention, hyperactivity and impulsivity. Skills like organization, planning, studying, and managing long-term projects are also critical.  Medication cannot teach these skills.

So, in addition to medication, the patient's treatment program should include educational support (tutoring, structured study skills programs), behavioral interventions (parent training, classroom management strategies), and accommodations at school (extra time, reduced distractions, organizational aids) Parents should discuss with their prescriber which of these methods would be appropriate.

Conclusions 

ADHD medication is a powerful tool for reducing symptoms and supporting learning. It improves test scores and grades for some children, especially when taken consistently. But it is not a magic bullet for academic success. The best results come when medication is combined with educational and behavioral supports that help children build the skills they need to thrive in school and beyond.

September 17, 2025