June 4, 2024

Understanding the Role of Disinhibition in ADHD and the Impact of Physical Activity

ADHD often includes a problem called disinhibition. This means that the brain struggles to control attention, thoughts, emotions, and behavior, which can lead to negative outcomes. Normally, inhibition helps people stay focused and avoid distractions, but when it fails, it's called disinhibition.

Children with ADHD who have problems with inhibition may face issues like substance abuse, self-harm, and antisocial behavior. Improving their inhibition can help them better manage themselves, do well in school, and have better relationships.

A team of researchers from China and South Korea explored whether physical activity could improve inhibition in children with ADHD. They reviewed studies and excluded those without control groups, those with poor quality assessments, and those involving other interventions like cognitive training or supplements. Their final analysis included 11 studies with 713 participants.

Key Findings on Physical Activity

  1. Frequency and Duration: Physical activity had to be done at least twice a week to show significant improvement in inhibition. Sessions needed to last between 45 minutes to an hour for noticeable benefits, with sessions over an hour showing even greater improvements.
  2. Consistency: Regular, long-term physical activity was more effective than single sessions.
  3. Intensity: Moderate-to-vigorous activities were better than moderate activities alone.
  4. Type of Activity:some text
    • Open-skilled sports (like ping-pong or taekwondo) which involve reacting to changing environments, showed the most significant improvements.
    • Closed-skill sports (like running or swimming) showed smaller improvements.
    • Exergaming (exercise using video games) had moderate benefits.
  5. Specific Improvements:some text
    • Improvements in response inhibition (the ability to control impulsive responses) were small to medium.
    • Improvements in interference suppression (preventing distractions from affecting working memory) were large.

Conclusion

The research concluded that physical activity can significantly improve the inhibition in children with ADHD, especially with regular, moderate-to-vigorous, open-skilled exercise done at least twice a week for an hour or more. Future studies should continue to explore this with high-quality methods to confirm these findings.

Meng Wang, Xinyue Yang, Jing Yu, Jian Zhu, Hyun-Duck Kim, and Angelita Cruz, “Effects of Physical Activity on Inhibitory Function in Children with Attention Deficit Hyperactivity Disorder: A Systematic Review and Meta-Analysis,” International Journal of Environmental Research and Public Health (2023) 20, 1032, https://doi.org/10.3390/ijerph20021032.

Related posts

Immediate and Long-term Effects of Exercise on ADHD Symptoms and Cognition

Immediate and Longer-term Effects of Exercise on ADHD Symptoms and Cognition

A team of Spanish researchers has published a systematic review of 16 studies with a total of 728 participants exploring the effects of physical exercise on children and adolescents with ADHD. Fourteen studies were judged to be of high quality, and two of medium quality.

Seven studies looked at the acute effects of exercise on eight to twelve-year-old youths with ADHD. Acute means that the effects were measured immediately after periods of exercise lasting up to 30 minutes. Five studies used treadmills and two used stationary bicycles, for periods of five to 30 minutes. Three studies "showed a significant increase in the speed of reaction and precision of response after an intervention of 20-30 min, but at moderate intensity (50-75%)." Another study, however, found no improvement in mathematical problem-solving after 25 minutes using a stationary bicycle at low (40-50%) or moderate intensity (65-75%). The three others found improvements in executive functioning, planning, and organization in children after 20- to 30-minute exercise sessions.

Nine studies examined longer-term effects, following regular exercise over many weeks. One reported that twenty consecutive weekly yoga sessions improved attention. Another found that moderate to vigorous physical activity (MVPA) led to improved behavior beginning in the third week, and improved motor, emotional and attentional control, by the end of five weeks. A third study reported that eight weeks of starting the school day with 30 minutes of physical activity led to improvement in Connor's ADHD scores, oppositional scores, and response inhibition. Another study found that twelve weeks of aerobic activity led to declines in bad mood and inattention. Yet another reported that thrice-weekly 45-minute sessions of MVPA over ten weeks improved not only muscle strength and motor skills, but also attention, response inhibition, and information processing.

Two seventy-minute table tennis per week over twelve weeks improved executive functioning and planning, in addition to locomotor and object control skills.

Two studies found a significant increase in brain activity. One involved two hour-long sessions of rowing per week for eight weeks, the other three 90-minute land-based sessions per week for six weeks. Both studies measured higher activation of the right frontal and right temporal lobes in children, and lower theta/alpha ratios in male adolescents.

All 16 studies found positive effects on cognition. Five of the nine longer-term studies found positive effects on behavior. No study found any negative effects. The authors of the review concluded that physical activity "improves executive functions, increases attention, contributes to greater planning capacity and processing speed and working memory, improves the behavior of students with ADHD in the learning context, and consequently improves academic performance." Although the data are limited by a lack of appropriate controls, they suggest that, in addition to the well-known positive effects of physical activity, one may expect to see improvements in ADHD symptoms and associated features, especially for periods of sustained exercise.

July 18, 2021

How Effective Is Exercise in Treating ADHD?

New meta-analysis explores effectiveness of physical exercise as treatment for ADHD

Noting that "Growing evidence shows that moderate physical activity (PA) can improve psychological health through enhancement of neurotransmitter systems," and "PA may play a physiological role similar to stimulant medications by increasing dopamine and norepinephrine neurotransmitters, thereby alleviating the symptoms of ADHD," a Chinese team of researchers performed a comprehensive search of the peer-reviewed journal literature for studies exploring the effects of physical activity on ADHD symptoms.

They found nine before-after studies with a total of 232 participants, and fourteen two-group control studies with a total of 303 participants, that met the criteria for meta-analysis.

The meta-analysis of before-after studies found moderate reductions in inattention and moderate-to-strong reductions in hyperactivity/impulsivity. It also reported moderate reductions in emotional problems and small-to-moderate reductions in behavioral problems.

The effect was even stronger among unmediated participants. There was a very strong reduction in inattention and a strong reduction in hyperactivity/impulsivity.

The meta-analysis of two-group control studies found strong reductions in inattention, but no effect on hyperactivity/impulsivity. It also found no significant effect on emotional and behavioral problems.

There was no sign of publication bias in any of the meta-analyses.

The authors concluded, "Our results suggest that PA intervention could improve ADHD-related symptoms, especially inattention symptoms. However, due to a lot of confounders, such as age, gender, ADHD subtypes, the lack of rigorous double-blinded randomized-control studies, and the inconsistency of the PA program, our results still need to be interpreted with caution."

February 21, 2022

Meta-analysis suggests regular exercise improves core symptoms and executive functions in child and adolescent ADHD

Meta-analysis Suggests Regular Exercise Improves Core Symptoms and Executive Functions in Child and Adolescent ADHD

A Chinese study team has performed an updated meta-analysis of randomized clinical trials (RCTs) published through July 2022, looking specifically at the effects of chronic exercise on ADHD core symptoms and executive functions in children and adolescents.

The researchers defined chronic to mean exercise interventions lasting at least six weeks, with the longest clocking in at well over a year (72 weeks). 

They only included RCTs with blinding of all assessors who measured the primary outcomes, to guard against any conscious or unconscious bias.

A total of 22 studies met criteria for inclusion in the series of meta-analyses they performed. The RCTs were widely distributed, with four from North America, three from Africa, three from Europe, eleven from Asia, and one from Oceania.

Three studies were rated as being at low risk of bias, the other 19 at moderate risk of bias.

Meta-analysis of eleven RCTs with a combined 514 participants reported a small-to-medium reduction in ADHD core symptoms. Between-study variation (heterogeneity) was moderate, and there was no indication of publication bias.

Breaking that down by age group, for children (eight RCTs, 357 children) the reduction in core symptoms was likewise small-to-medium, versus a medium effect size reduction among adolescents (three RCTs, 157 adolescents), with no heterogeneity.

When the control group received no treatment or was sedentary (8 RCTs, 422 participants), the effect size remained small-to-medium, whereas when the control group received education, it became large (two RCTs, 58 participants). 

Improvements in executive functions were even more pronounced. Meta-analysis of 17 RCTs with a combined 795 participants yielded a medium-to-large effect size reduction in executive functions overall. Heterogeneity was moderate, with absolutely no sign of publication bias.

More specifically, there was a medium effect size improvement in working memory (10 RCTs, 290 participants), a medium-to-large effect size improvement in cognitive flexibility (8 RCTs, 206 participants), and a large effect size improvement in inhibition (12 RCTs, 299 participants). 

Once again, adolescents benefited more than children. Whereas children showed medium effect size improvements in executive function (14 RCTs, 659 children), adolescents registered enormous improvements (3 RCTs, 136 adolescents).

One note of caution, though. Among RCTs rated low risk of bias, effect size improvements in both ADHD core symptoms (3 RCTs, 180 participants) and executive functions (2 RCTs, 86 participants) were small and did not reach statistical significance. That suggests a need for more and better RCTs to reach a more settled verdict.

For now, the authors concluded, “This meta-analysis suggests that CEIs [chronic exercise interventions] have small-to-moderate effects on overall core symptoms and executive functions in children and adolescents with ADHD.”

February 12, 2024

Swedish Nationwide Population Study Finds Strong Association Between ADHD and Sleep Disorder Diagnoses and Sleep Medication Prescriptions

There has been consistent evidence of an association between ADHD and subjectively reported sleep problems even in patients not medicated for the disorder. There have also been studies using wrist-worn actigraphy (a wrist watch-like device that measures gross motor activity) and sleep lab-based polysomnography that measure objective sleep parameters. 

What has been missing are large population-based cohort studies to explore the prevalence rates of different sleep disorders and medical prescriptions in ADHD. 

Methods Used: 

Sweden has a single-payer health insurance system and a series of national population registers that track virtually its entire population. Using the Swedish Total Population Register, a local research team created a cohort of all 6,470,658 persons born between 1945 and 2008. They linked this to the Swedish National Patient Register, which includes inpatient hospitalizations from 1975 to 2013, and outpatient specialist diagnoses from 2001 to 2013, to identify diagnoses of sleep disorders. They also linked to the Prescribed Drug Register, covering 2005 to 2013, to identify prescriptions for sleep medications. 

Summary of Findings: 

Overall, persons with ADHD were eight times more likely to be diagnosed with any sleep disorder relative to normally developing peers. Broken down by age, adolescents with ADHD were 16 times more likely to receive such diagnoses, young adults (18-30) twelve times more likely, children and mid-age adults (31-45) eight times more likely, and older adults six times more likely. 

Broken down by specific sleep disorder diagnoses, relative to normally developing peers, persons with ADHD were: 

  • Five times more likely to have sleep terrors and seven times more likely to have nightmares. 
  • Six times more likely to sleepwalk. 
  • Seven times more likely to have restless leg syndrome. 
  • Sixteen times more likely to have insomnia. 
  • Nineteen times more likely to have disorders of sleep/wake schedule (circadian rhythms). 
  • Twenty times more likely to have hypersomnia (excessive sleeping). 
  • Over seventy times more likely to exhibit narcolepsy (daytime sleepiness) and cataplexy (sudden loss of muscle tone leading to collapse). 

As for sleep medication, relative to normally developing peers, persons with ADHD were: 

  • Seven times more likely to be prescribed the hypnotic zolpidem (Ambien). 
  • Eight times more likely to be prescribed the hypnotic zopiclone or the antihistamine propriomazine. 
  • Ten times more likely to be prescribed the sedative and hypnotic zaleplon (Sonata). 
  • Fourteen times more likely to be prescribed any sleep medication. 
  • 37 times more likely to be prescribed melatonin, the body’s natural sleep-inducing hormone, which is a prescription medication in Europe. 

Conclusion: 

The team concluded, “Our findings also suggest that greater clinical attention should be directed towards addressing sleep problems in individuals with ADHD. This entails implementing proactive measures through sleep education programmes and providing both pharmacological and non-pharmacological approaches such as cognitive behavioural therapy and parental sleep training.” 

December 12, 2024

Effect of Physical Activity on Attention in School-age Children with ADHD: Systematic Review and Meta-Analysis

Overview

Attention is a critical determinant of academic achievement, influencing domains such as language, literacy, and mathematics. To explore whether physical activity can improve attention in children with ADHD, an international team conducted a meta-analysis of peer-reviewed studies. The goal was to evaluate the impact of various physical activity regimens on attention-related outcomes in this population.

Methods

The researchers performed a comprehensive search of the medical literature to identify studies examining the effects of physical activity on attention in schoolchildren with ADHD. They included 10 studies with a total of 474 participants in their meta-analysis. The studies evaluated two main types of physical activity:

  • Mentally engaging physical activities
  • Aerobic exercise

Additionally, they examined variations based on the frequency, duration, and type of control groups used in the studies. To assess consistency, they also analyzed heterogeneity (variability of outcomes) and checked for potential publication bias.

Summary

Key findings from the meta-analysis include:

  1. Effectiveness of Mentally Engaging Activities:some text
    • Seven studies (168 participants) involving mentally engaging physical activities showed large reductions in attention problems.
    • Heterogeneity was significantly reduced for these studies.
  2. Effectiveness of Aerobic Exercise:some text
    • Three studies (306 participants) using aerobic exercise alone found no improvements in attention.
  3. Impact of Control Groups:some text
    • Studies with no intervention as a control group (4 studies, 81 participants) reported large improvements in attention problems.
    • Those comparing physical activity with other interventions (6 studies, 393 participants) found only small improvements.
  4. Frequency and Duration:some text
    • Duration of physical activity made little difference. Studies with sessions of an hour or more had slightly better outcomes, but the difference was not significant.
    • Surprisingly, lower frequency was more effective:some text
      • One to two sessions per week (7 studies, 162 participants) led to large reductions in attention problems.
      • Three or more sessions per week (3 studies, 312 participants) showed no improvement.
Conclusion

The authors concluded that mentally engaging exercise is more effective than aerobic exercise in improving attention problems in schoolchildren with ADHD. Furthermore, higher frequency and longer duration of physical activity do not necessarily yield better outcomes.

This research underscores the importance of tailoring physical activity interventions to emphasize cognitive engagement over intensity or duration. By refining strategies, educators and parents can better support children with ADHD in achieving academic success.   But take note:  given the results from controlled studies, it seems clear that if there is a positive effect of exercise, it is very small so should not replace standard treatments for ADHD.  

NEWS TUESDAY: How Stimulant Use in Childhood ADHD May Impact Brain Connectivity and Symptom Improvement

Previous studies have examined how stimulant medications affect the brain in controlled settings, but less is known about their impact in real-world conditions, where children may not always take their medication consistently or may combine it with other treatments. A new study leverages data from the Adolescent Brain Cognitive Development (ABCD) study to explore how real-world stimulant use impacts brain connectivity and ADHD symptoms over two years.

Changes in Brain Connectivity Researchers used brain imaging data from the ABCD study to examine the functional connectivity—communication between brain areas—of six regions within the striatum, a brain area involved in motivation and movement control. They focused on how stimulant use influenced connectivity between the striatum and other networks involved in executive functioning and visual-motor control.

The study found that stimulant exposure was linked to reduced connectivity between key striatal areas (such as the caudate and putamen) and large brain networks, including the frontoparietal and visual networks. These changes were more pronounced in children taking stimulants compared to those who were not medicated, as well as compared to typically developing children. Importantly, this reduction in connectivity seemed to regulate certain brain networks that are typically altered in children with ADHD.

Symptom Improvement In addition to brain changes, 14% of children taking stimulants experienced a significant reduction in ADHD symptoms over the two-year period. These children showed the strongest connectivity reductions between the right putamen and the visual network, suggesting that stimulant-induced connectivity changes may contribute to improvements in visual attentional control, which is a common challenge for children with ADHD.

Why This Matters This study is one of the first to examine how stimulant use in real-world conditions affects brain networks in children with ADHD over time. The findings suggest that stimulants may help normalize certain connectivity patterns associated with ADHD, particularly in networks related to attention and control. These insights could help clinicians better understand the potential long-term effects of stimulant treatment and guide personalized approaches to ADHD management.

Conclusion Stimulant medications appear to alter striatal-cortical connectivity in children with ADHD, with some changes linked to symptom improvement. This research highlights the potential for stimulant medications to impact brain networks in ways that support attention and control, highlighting the importance of understanding how real-world medication use influences ADHD treatment outcomes.

December 3, 2024