June 4, 2024

Understanding the Role of Disinhibition in ADHD and the Impact of Physical Activity

ADHD often includes a problem called disinhibition. This means that the brain struggles to control attention, thoughts, emotions, and behavior, which can lead to negative outcomes. Normally, inhibition helps people stay focused and avoid distractions, but when it fails, it's called disinhibition.

Children with ADHD who have problems with inhibition may face issues like substance abuse, self-harm, and antisocial behavior. Improving their inhibition can help them better manage themselves, do well in school, and have better relationships.

A team of researchers from China and South Korea explored whether physical activity could improve inhibition in children with ADHD. They reviewed studies and excluded those without control groups, those with poor quality assessments, and those involving other interventions like cognitive training or supplements. Their final analysis included 11 studies with 713 participants.

Key Findings on Physical Activity

  1. Frequency and Duration: Physical activity had to be done at least twice a week to show significant improvement in inhibition. Sessions needed to last between 45 minutes to an hour for noticeable benefits, with sessions over an hour showing even greater improvements.
  2. Consistency: Regular, long-term physical activity was more effective than single sessions.
  3. Intensity: Moderate-to-vigorous activities were better than moderate activities alone.
  4. Type of Activity:some text
    • Open-skilled sports (like ping-pong or taekwondo) which involve reacting to changing environments, showed the most significant improvements.
    • Closed-skill sports (like running or swimming) showed smaller improvements.
    • Exergaming (exercise using video games) had moderate benefits.
  5. Specific Improvements:some text
    • Improvements in response inhibition (the ability to control impulsive responses) were small to medium.
    • Improvements in interference suppression (preventing distractions from affecting working memory) were large.

Conclusion

The research concluded that physical activity can significantly improve the inhibition in children with ADHD, especially with regular, moderate-to-vigorous, open-skilled exercise done at least twice a week for an hour or more. Future studies should continue to explore this with high-quality methods to confirm these findings.

Meng Wang, Xinyue Yang, Jing Yu, Jian Zhu, Hyun-Duck Kim, and Angelita Cruz, “Effects of Physical Activity on Inhibitory Function in Children with Attention Deficit Hyperactivity Disorder: A Systematic Review and Meta-Analysis,” International Journal of Environmental Research and Public Health (2023) 20, 1032, https://doi.org/10.3390/ijerph20021032.

Related posts

Immediate and Long-term Effects of Exercise on ADHD Symptoms and Cognition

Immediate and Longer-term Effects of Exercise on ADHD Symptoms and Cognition

A team of Spanish researchers has published a systematic review of 16 studies with a total of 728 participants exploring the effects of physical exercise on children and adolescents with ADHD. Fourteen studies were judged to be of high quality, and two of medium quality.

Seven studies looked at the acute effects of exercise on eight to twelve-year-old youths with ADHD. Acute means that the effects were measured immediately after periods of exercise lasting up to 30 minutes. Five studies used treadmills and two used stationary bicycles, for periods of five to 30 minutes. Three studies "showed a significant increase in the speed of reaction and precision of response after an intervention of 20-30 min, but at moderate intensity (50-75%)." Another study, however, found no improvement in mathematical problem-solving after 25 minutes using a stationary bicycle at low (40-50%) or moderate intensity (65-75%). The three others found improvements in executive functioning, planning, and organization in children after 20- to 30-minute exercise sessions.

Nine studies examined longer-term effects, following regular exercise over many weeks. One reported that twenty consecutive weekly yoga sessions improved attention. Another found that moderate to vigorous physical activity (MVPA) led to improved behavior beginning in the third week, and improved motor, emotional and attentional control, by the end of five weeks. A third study reported that eight weeks of starting the school day with 30 minutes of physical activity led to improvement in Connor's ADHD scores, oppositional scores, and response inhibition. Another study found that twelve weeks of aerobic activity led to declines in bad mood and inattention. Yet another reported that thrice-weekly 45-minute sessions of MVPA over ten weeks improved not only muscle strength and motor skills, but also attention, response inhibition, and information processing.

Two seventy-minute table tennis per week over twelve weeks improved executive functioning and planning, in addition to locomotor and object control skills.

Two studies found a significant increase in brain activity. One involved two hour-long sessions of rowing per week for eight weeks, the other three 90-minute land-based sessions per week for six weeks. Both studies measured higher activation of the right frontal and right temporal lobes in children, and lower theta/alpha ratios in male adolescents.

All 16 studies found positive effects on cognition. Five of the nine longer-term studies found positive effects on behavior. No study found any negative effects. The authors of the review concluded that physical activity "improves executive functions, increases attention, contributes to greater planning capacity and processing speed and working memory, improves the behavior of students with ADHD in the learning context, and consequently improves academic performance." Although the data are limited by a lack of appropriate controls, they suggest that, in addition to the well-known positive effects of physical activity, one may expect to see improvements in ADHD symptoms and associated features, especially for periods of sustained exercise.

July 18, 2021

How Effective Is Exercise in Treating ADHD?

New meta-analysis explores effectiveness of physical exercise as treatment for ADHD

Noting that "Growing evidence shows that moderate physical activity (PA) can improve psychological health through enhancement of neurotransmitter systems," and "PA may play a physiological role similar to stimulant medications by increasing dopamine and norepinephrine neurotransmitters, thereby alleviating the symptoms of ADHD," a Chinese team of researchers performed a comprehensive search of the peer-reviewed journal literature for studies exploring the effects of physical activity on ADHD symptoms.

They found nine before-after studies with a total of 232 participants, and fourteen two-group control studies with a total of 303 participants, that met the criteria for meta-analysis.

The meta-analysis of before-after studies found moderate reductions in inattention and moderate-to-strong reductions in hyperactivity/impulsivity. It also reported moderate reductions in emotional problems and small-to-moderate reductions in behavioral problems.

The effect was even stronger among unmediated participants. There was a very strong reduction in inattention and a strong reduction in hyperactivity/impulsivity.

The meta-analysis of two-group control studies found strong reductions in inattention, but no effect on hyperactivity/impulsivity. It also found no significant effect on emotional and behavioral problems.

There was no sign of publication bias in any of the meta-analyses.

The authors concluded, "Our results suggest that PA intervention could improve ADHD-related symptoms, especially inattention symptoms. However, due to a lot of confounders, such as age, gender, ADHD subtypes, the lack of rigorous double-blinded randomized-control studies, and the inconsistency of the PA program, our results still need to be interpreted with caution."

February 21, 2022

Meta-analysis suggests regular exercise improves core symptoms and executive functions in child and adolescent ADHD

Meta-analysis Suggests Regular Exercise Improves Core Symptoms and Executive Functions in Child and Adolescent ADHD

A Chinese study team has performed an updated meta-analysis of randomized clinical trials (RCTs) published through July 2022, looking specifically at the effects of chronic exercise on ADHD core symptoms and executive functions in children and adolescents.

The researchers defined chronic to mean exercise interventions lasting at least six weeks, with the longest clocking in at well over a year (72 weeks). 

They only included RCTs with blinding of all assessors who measured the primary outcomes, to guard against any conscious or unconscious bias.

A total of 22 studies met criteria for inclusion in the series of meta-analyses they performed. The RCTs were widely distributed, with four from North America, three from Africa, three from Europe, eleven from Asia, and one from Oceania.

Three studies were rated as being at low risk of bias, the other 19 at moderate risk of bias.

Meta-analysis of eleven RCTs with a combined 514 participants reported a small-to-medium reduction in ADHD core symptoms. Between-study variation (heterogeneity) was moderate, and there was no indication of publication bias.

Breaking that down by age group, for children (eight RCTs, 357 children) the reduction in core symptoms was likewise small-to-medium, versus a medium effect size reduction among adolescents (three RCTs, 157 adolescents), with no heterogeneity.

When the control group received no treatment or was sedentary (8 RCTs, 422 participants), the effect size remained small-to-medium, whereas when the control group received education, it became large (two RCTs, 58 participants). 

Improvements in executive functions were even more pronounced. Meta-analysis of 17 RCTs with a combined 795 participants yielded a medium-to-large effect size reduction in executive functions overall. Heterogeneity was moderate, with absolutely no sign of publication bias.

More specifically, there was a medium effect size improvement in working memory (10 RCTs, 290 participants), a medium-to-large effect size improvement in cognitive flexibility (8 RCTs, 206 participants), and a large effect size improvement in inhibition (12 RCTs, 299 participants). 

Once again, adolescents benefited more than children. Whereas children showed medium effect size improvements in executive function (14 RCTs, 659 children), adolescents registered enormous improvements (3 RCTs, 136 adolescents).

One note of caution, though. Among RCTs rated low risk of bias, effect size improvements in both ADHD core symptoms (3 RCTs, 180 participants) and executive functions (2 RCTs, 86 participants) were small and did not reach statistical significance. That suggests a need for more and better RCTs to reach a more settled verdict.

For now, the authors concluded, “This meta-analysis suggests that CEIs [chronic exercise interventions] have small-to-moderate effects on overall core symptoms and executive functions in children and adolescents with ADHD.”

February 12, 2024

New Study Examines ADHD Stimulant Use and Substance Use Risks Among Adolescents

U.S. Study Finds No Increased Non-Medical Use Among Those Prescribed Stimulants as Adolescents, but Finds Other Links

A recent U.S. study challenges assumptions about the link between prescription stimulant use for ADHD and later substance abuse. Adolescents who used prescription stimulants under a physician’s supervision did not exhibit increased rates of non-medical stimulant use or cocaine use as they transitioned into young adulthood. However, other factors, like binge drinking and cannabis use, showed significant associations with later substance misuse, suggesting that the landscape of risk is more complex than previously understood.

Stimulants and ADHD: Understanding the Risks

Prescription stimulants are considered one of the most effective treatments for ADHD. While these medications can significantly improve focus and behavior, concerns have persisted that using stimulants during adolescence might predispose individuals to substance use disorder (SUD). Some theories suggest that early exposure to stimulants could increase the likelihood of cocaine use, as both substances affect the brain's dopamine pathways similarly.

Yet, previous research often lacked large, longitudinal studies focusing on adolescents with ADHD who had never been treated with stimulants. To fill this gap, a research team followed a nationally representative cohort of 11,905 high school seniors (12th graders, mostly aged 18) for six years, tracking their substance use behaviors.

Study Design: Following the Participants

At the start of the study, participants completed surveys regarding their ADHD treatment history—whether they had used stimulant therapy, non-stimulant therapy, or no medication at all. This formed three groups:

  • Adolescents treated with stimulant therapy for ADHD
  • Adolescents treated with non-stimulant therapy for ADHD (ADHD controls)
  • Adolescents with no history of ADHD treatment (non-ADHD controls)

Participants then completed follow-up surveys every two years, reporting on their use of substances like prescription stimulants and cocaine, as well as their engagement in behaviors like binge drinking and cannabis use.

Key Findings: No Direct Link to Non-medical Stimulant or Cocaine Use

The study found no significant differences in the rates of non-medical stimulant use or cocaine use among the three groups. Adolescents who had been prescribed stimulant medications were not more likely to misuse prescription stimulants or cocaine as young adults than those who had not received such medications.

However, other behaviors at age 18 showed strong associations with later substance use:

  • Binge drinking during late adolescence was linked to an 80% increase in the likelihood of subsequent nonmedical prescription stimulant use and cocaine use.
  • Nonmedical use of prescription opioids at age 18 increased the odds of later nonmedical stimulant use by 50% and of cocaine use by two-thirds.
  • Cannabis use by age 18 more than tripled the likelihood of later non-medical stimulant use and increased the odds of subsequent cocaine use sixfold.

Clinical Implications

The study’s findings have important implications for both clinicians and families managing ADHD. Although ADHD is associated with an increased risk of SUD, the researchers observed no higher risk of nonmedical stimulant use among adolescents who had taken stimulant therapy compared to those who hadn’t. Additionally, there was no evidence that stimulant medications posed a greater risk than non-stimulant medications for subsequent misuse.

The findings also highlight the need for more robust screening for alcohol and other drug use among adolescents. As the study notes, current guidelines do not recommend routine screening for substance misuse in adolescents due to limited evidence. However, given the associations found between binge drinking, cannabis use, and later substance misuse, such preventive measures could play a key role in reducing risks during this vulnerable period of development.

Ultimately, the study sheds light on the multifaceted nature of substance use risks in adolescents and young adults, suggesting that while prescription stimulant use for ADHD under medical supervision may not directly contribute to substance abuse, the broader context of an adolescent’s behaviors and environment is crucial in shaping future outcomes.

October 17, 2024

CDC: ADHD Diagnosis, Treatment, and Telehealth Use in Adults

The report "Attention-Deficit/Hyperactivity Disorder Diagnosis, Treatment, and Telehealth Use in Adults" published in the CDC's Morbidity and Mortality Weekly Report provides a detailed examination of the prevalence and treatment of ADHD among U.S. adults based on data collected by the National Center for Health Statistics Rapid Surveys System during October–November 2023. This data is crucial as it offers updated estimates on the prevalence of ADHD in adults, a condition often regarded as primarily affecting children, and highlights the ongoing challenges in accessing ADHD-related treatments, including telehealth services and medication availability.

Methods:

The methods used in this study involved the National Center for Health Statistics (NCHS) Rapid Surveys System (RSS), which gathers data to approximate the national representation of U.S. adults through two commercial survey panels: the AmeriSpeak Panel from NORC at the University of Chicago and Ipsos’s KnowledgePanel. The data were collected via online and telephone interviews from 7,046 adults. The responses were weighted to reflect the total U.S. adult population, ensuring that the results approximate national estimates. In identifying adults with current ADHD, respondents were asked if they had ever been diagnosed with ADHD and, if so, whether they currently had the condition. The study also collected data on treatment types (including stimulant and nonstimulant medications), telehealth use, and demographic variables such as age, education, race, and household income.

Results:

The results showed that approximately 6.0% of U.S. adults, or an estimated 15.5 million people, had a current ADHD diagnosis. Notably, more than half of the adults with ADHD reported receiving their diagnosis during adulthood (age ≥18 years), indicating that diagnosis can occur well beyond childhood. Analysis of demographics showed significant differences between adults with ADHD and those without; adults with ADHD were more likely to be younger, with 84.5% under the age of 50. Adults with ADHD were also less likely to have completed a bachelor's degree and more likely to have a household income below the federal poverty level compared to those without ADHD. Regarding treatment, the report found that approximately one-third of adults with ADHD were untreated, and around one-third received both medication and behavioral treatment. Among those receiving pharmacological treatment, 33.4% used stimulant medications, and 71.5% of these individuals reported difficulties in getting their prescriptions filled due to medication unavailability, reflecting recent stimulant shortages in the United States. Additionally, nearly half of adults with ADHD had used telehealth services for ADHD-related care, including obtaining prescriptions and receiving counseling or therapy.

The discussion emphasizes the public health implications of these findings. ADHD is often diagnosed late, with many individuals not receiving a diagnosis until adulthood, which underscores the need for improved awareness and early identification of ADHD symptoms across the life course. Moreover, the high prevalence of untreated ADHD and the barriers to accessing stimulant medications reveal significant gaps in the healthcare system's ability to support adults with ADHD. These gaps can contribute to poorer outcomes, such as increased risk of injury, substance use, and social impairment. The report also highlights the role of telehealth, which became more prominent during the COVID-19 pandemic. Telehealth appears to provide a viable solution for expanding access to ADHD diagnosis and treatment, though challenges remain regarding the quality of care and potential for misuse. The authors suggest that improved clinical care guidelines for adults with ADHD could help reduce delays in diagnosis and treatment access, thus improving long-term outcomes for affected individuals.

Conclusion:

In conclusion, the study provides a comprehensive view of the prevalence, treatment, and telehealth use for ADHD among adults in the U.S.  These data are crucial for guiding clinical care and shaping policies related to medication access and telehealth services. The findings underscore the importance of ensuring an adequate supply of stimulant medications and reducing barriers to ADHD care, ultimately enhancing the quality of life for adults with this condition.   The good news is that many adults with ADHD are being diagnosed and treated.  It is, however, concerning that many are not treated and that many of those treated with stimulants were impacted by the stimulant shortage.

For more details, see:   https://www.cdc.gov/mmwr/volumes/73/wr/mm7340a1.htm

October 14, 2024

News Tuesday Study! Understanding ADHD in Older Adults: An Overlooked Concern

60% to 90% of youth with ADHD continue to have symptoms as adults. In older adults, about 2.5% are believed to have ADHD, but it often goes unnoticed because research is limited and current diagnosis methods are based mostly on studies of young people.

Our commentary discusses key points about ADHD in older adults.  Although 2 to 3 percent of older adults have ADHD when using proper diagnostic tools, only 0.23% are diagnosed in medical records. This shows that ADHD is greatly underdiagnosed in older adults. Even worse, less than 40% of those who are diagnosed receive any treatment, which highlights the need for doctors to be better educated about ADHD in this age group. Current ways of diagnosing ADHD need to be improved for people over 50. Also, there isn’t much research on ADHD medications for people over 60, with most studies excluding them, which raises concerns about how safe and effective these treatments are for older adults, especially since stimulant medications can affect the heart.

There are also biases among doctors that make it harder to diagnose and treat ADHD in older adults. Many doctors aren’t trained to recognize ADHD in this age group and still see it as a condition that only affects young people. Some think that if a person hasn’t been treated for ADHD by this stage in life, they don’t need treatment now. But this ignores the fact that untreated ADHD can cause lifelong struggles and reduce the person’s quality of life. Some doctors are also worried about the risks of ADHD medications for older patients, even though research shows that these medications are usually safe when properly monitored.

Diagnosing ADHD in older adults can be tricky because its symptoms can look similar to other conditions, like mild cognitive impairment or dementia. This makes it important for doctors to do a thorough assessment that looks at medical, psychiatric, and psychological factors. Since older adults often have other health issues, it’s crucial for doctors to tell the difference between ADHD symptoms and those caused by other conditions.

In the end, we need more awareness, training, and research on ADHD in older adults. Doctors need to push past biases and consider the benefits of treating ADHD in this age group, carefully weighing the risks and rewards. As the population of older adults grows, so does the need for studies and guidelines to provide better care for older people with ADHD. Filling these gaps will ensure that older adults with ADHD get the attention and treatment they need.

October 8, 2024