August 5, 2025

New Non-Stimulant ADHD Drug: Clinical Trial Results

The Newest Non-stimulant Medication for ADHD

Centanafadine, which is currently under investigation as a treatment for ADHD, will be the first triple reuptake inhibitor for the disorder if it is approved by the FDA. It improves norepinephrine, dopamine and serotonin levels. This new medication is not a stimulant, but due to the dopamine component, it has a stimulant-like effect in patients. In adults, two phase 3 trials and a year-long extension have shown sustained benefits and a tolerable safety profile, laying the groundwork for pediatric research.

Based on this study, improvement was already noticeable after the first week and held steady through week 6. The lower dose (164.4 mg) didn’t separate from placebo, reminding us that getting the dose right will be critical. The effect size was smaller than what is seen for stimulants but 50% of patients had excellent outcomes as indicated by reductions in the ADHD-RS of 50% or more.

Side effect patterns look familiar to anyone who prescribes ADHD medications; loss of appetite, nausea and headaches topped the list. About half of teens on the higher dose reported at least one treatment-emergent adverse event, compared with a quarter of those on placebo. Severe reactions were rare but did include isolated liver enzyme spikes, rash, and a few reports of aggression or somnolence. For everyday practice, that translates to routine growth checks, a look at baseline liver function, and clear guidance to families about reporting rashes or mood changes promptly.

The researchers noted that the study had certain limitations, including limited generalizability to adolescents beyond North America, the exclusion of teacher ratings on the ADHD-RS-5 scale and the study’s short duration. They added that future studies should explore long-term treatment outcomes and efficacy compared with other ADHD treatments, as well as its effect on treating ADHD with comorbid conditions.

Why should this matter to clinicians already juggling multiple non-stimulant options for ADHD?

First, speed. Centanafadine separated from placebo within a week. In this regard, it might be closer to stimulants than to the multi-week ramp-up we expect from current non-stimulants. Second, it offers another option when stimulants are contraindicated or poorly tolerated, or when they raise diversion concerns. Its mechanism also makes it intriguing for patients who need both norepinephrine and dopamine coverage but prefer to avoid schedule II drugs. Because it also improves serotonergic transmission, it may be useful for some of ADHD’s comorbidities (see our new article for evidence about serotonin’s role in these disorders).

Keep in mind that centanafadine for ADHD is still investigational, so participation in clinical trials remains the only access route.

Adler, Lenard A. MD1; Adams, Julie MD2; Madera-McDonough, Jessica MD2; Kohegyi, Eva MD2; Hobart, Mary PhD2; Chang, Denise PhD2; Angelicola, Mark MS2; McQuade, Robert PhD2; Liebowitz, Michael MD3. Efficacy, Safety, and Tolerability of Centanafadine Sustained-Release Tablets in Adults With Attention-Deficit/Hyperactivity Disorder: Results of 2 Phase 3, Randomized, Double-blind, Multicenter, Placebo-Controlled Trials. Journal of Clinical Psychopharmacology 42(5):p 429-439, 9/10 2022. | DOI: 10.1097/JCP.0000000000001575

Related posts

Does ADHD Medication Improve the Parenting Skills of Adults with ADHD?

Does ADHD Medication Improve the Parenting Skills of Adults with ADHD?

Raising children is not easy. I should know.

As a clinical psychologist, I've helped parents learn the skills they need to be better parents. And my experience raising three children confirmed my clinical experience.

Parenting is a tough job under the best of circumstances, but it is even harder if the parent has ADHD.

For example, an effective parent establishes rules and enforces them systematically. This requires attention to detail, self-control, and good organizational skills. Given these requirements, it is easy to see how ADHD symptoms interfere with parenting. These observations have led some of my colleagues to test the theory that treating ADHD adults with medication would improve their parenting skills. I know about two studies that tested this idea.

In 2008, Dr. Chronis-Toscano and colleagues published a study using a sustained-release form of methylphenidate for mothers with ADHD. As expected, the medication decreased their symptoms of inattention and hyperactivity/impulsivity. The medication also reduced the mother's use of inconsistent discipline and corporal punishment and improved their monitoring and supervision of their children.

In a 2014 study, Waxmonsky and colleagues observed ADHD adults and their children in a laboratory setting once when the adults were off medication and once when they were on medication. They used the same sustained-release form of amphetamine for all the patients. As expected, the medications reduced ADHD symptoms in the parents. This laboratory study is especially informative because the researchers made objective ratings of parent-child interactions, rather than relying on the parents' reports of those interactions. Twenty parents completed the study. The medication led to less negative talk and commands and more praise by parents. It also reduced negative and inappropriate behaviors in their children.

Both studies suggest that treating ADHD adults with medication will improve their parenting skills. That is good news. But they also found that not all parenting behaviors improved. That makes sense. Parenting is a skill that must be learned. Because ADHD interferes with learning, parents with the disorder need time to learn these skills. Medication can eliminate some of the worst behaviors, but doctors should also provide adjunct behavioral or cognitive-behavioral therapies that could help ADHD parents learn parenting skills and achieve their full potential as parents.

May 7, 2021

High Dropout Rate in Six-Year Cohort Study of Medication Treatment for ADHD

High Dropout Rate in Six-Year Cohort Study of Medication Treatment for ADHD

Few studies have examined the safety and tolerability of ADHD medications (stimulants and atomoxetine) extending beyond six months, and none beyond a few years. A pair of Swedish neuroscientists at Uppsala University Hospital set out to explore longer-term outcomes. They conducted a six-year prospective study of 112 adults diagnosed with ADHD who were being treated with ADHD medications (primarily MPH, but also dexamphetamine and atomoxetine).


They found that at the end of that period, roughly half were still on medication, and half had discontinued treatment. There were no significant differences between the two groups in age, sex, ADHD severity, or comorbidity. The average ADHD score for the entire cohort declined to vary significantly, from a mean of 37 to a mean of 26, with less than one in a thousand odds of that being due to chance. There was also no sign of drug tolerance or a need to increase the dosage over time.
All 55 adults who discontinued treatment had taken MPH for at least part of the time. Eleven had also been treated with dexamphetamine(DEX) and 15 with atomoxetine (ATX). The average time on treatment was just under two years. Almost a third quit MPH because they perceived no beneficial effect. Since they were on average taking higher doses at discontinuation than initiation, that is unlikely to have been due to suboptimal dosage. Almost another third was discontinued for various adverse mental effects, including hyperactivity, elation, depressive moods, aggression, insomnia, fatigue, and lethargy. Another one in eleven quit when they lost contact with the prescribing physician. In the case of ATX, almost half quit because of what they perceived as adverse mental effects.


Among the 57 adults who remained on medication, four out of five reported a strong beneficial effect. Only two reported minimal or no effect. Compared with the group that discontinued, the group that remained on medication was far more likely to agree with the statements, "My quality of life has improved," and "My level of functioning has improved." Yet, as the authors caution, it is possible "that the subjects' subjective ratings contained a placebo-related mechanism in those who are compliant with the medication and pursue treatment over time." The authors reported that there were no significant differences in ADHD scores or ADHD severity between the group that quit and the group that remained on medication, even though, on average, the group that quit had been off medication for four years at follow-up.


We cannot explain why the patients who quit treatment showed similar levels of ADHD symptoms to those who continued treatment.  It is possible that some patients remit symptoms over time and do not require sustained treatment.  But we must keep in mind that there was a wide range of outcomes in both groups. Future work needs to find predictors of those who will do well after treatment withdrawal and those who do not.


Any decision on whether to maintain a course of medication should always weigh expected gains against adverse side effects. Short of hard evidence of continuing efficacy beyond two years, adverse events gain in relative importance. With that in mind, it is worth noting that this study reports that among those who remained on MPH, many reported side effects. More than a quarter complained of decreased appetite, one in four of dry mouth, one in five of anxiousness and increased heart rate, one in six of decreased sexual desire, one in nine of depressed mood, and one in eleven of insomnia.


This study breaks important ground in looking at the long-term effects of medication. It reaffirms findings elsewhere of the efficacy of ADHD medications. But contrary to the authors' conclusion, the data they present suggests the possibility that permanently medicating ADHD patients may not be more efficacious than discontinuation beyond a certain point, especially when balanced against adverse side effects.
But this is just one study with a relatively small sample size. This suggests a need for additional studies with larger sample sizes to pursue these questions with greater statistical reliability.

July 8, 2021

Non-stimulant Medications for Adults with ADHD: An Overview

NEW STUDY: Non-stimulant Medications for Adults with ADHD: An Overview

Attention-Deficit/Hyperactivity Disorder (ADHD) in adults is commonly treated with stimulant medications such as methylphenidate and amphetamines. However, not all patients respond well to these stimulants or tolerate them effectively. For such cases, non-stimulant medications provide an alternative treatment approach.

Recent research by Brancati et al. reviews the efficacy and safety of non-stimulant medications for adult ADHD. Atomoxetine, a well-studied non-stimulant, has shown significant effectiveness in treating ADHD symptoms in adults. The review highlights the importance of considering dosage, treatment duration, safety, and the presence of psychiatric comorbidities when prescribing atomoxetine.

Additionally, certain antidepressants, including tricyclic compounds, bupropion, and viloxazine, which possess noradrenergic or dopaminergic properties, have demonstrated efficacy in managing adult ADHD. Antihypertensive medications, especially guanfacine, have also been found effective. Other medications like memantine, metadoxine, and mood stabilizers show promise, whereas treatments like galantamine, antipsychotics, and cannabinoids have not yielded positive results.

The expert opinion section of the review emphasizes that while clinical guidelines primarily recommend atomoxetine as a second-line treatment, several other non-stimulant options can be utilized to tailor treatments based on individual patient needs and comorbid conditions. Despite these advancements, the authors call for further research to develop and refine more personalized treatment strategies for adults with ADHD.

This review underscores the growing landscape of non-stimulant treatment options, offering hope for more personalized and effective management of ADHD in adults.

June 25, 2024

Patient-Centered Outcomes Research Institute (PCORI) to Fund Landmark ADHD Medication Study

Today, most treatment guidelines recommend starting ADHD treatment with stimulant medications. These medicines often work quickly and can be very effective, but they do not help every child, and they can have bothersome side effects, such as appetite loss, sleep problems, or mood changes. Families also worry about long-term effects, the possibility of misuse or abuse, as well as the recent nationwide stimulant shortages. Non-stimulant medications are available, but they are usually used only after stimulants have not been effective.

This stimulant-first approach means that many patients who would respond well to a non-stimulant will end up on a stimulant medication anyway. This study addresses this issue by testing two different ways of starting medication treatment for school-age children with attention-deficit/hyperactivity disorder (ADHD). We want to know whether beginning with a non-stimulant medicine can work as well as the  “stimulant-first” approach, which is currently used by most prescribers.

From this study, we hope to learn:

  • Is starting with a non-stimulant medication “good enough” compared with starting with a stimulant?
    In other words, when we look at overall improvement in a child’s daily life, not just ADHD symptoms, does a non-stimulant-first approach perform similarly to a stimulant-first approach?
  • Which children do better with which approach?
    Children with ADHD are very different from one another. Some have anxiety, depression, learning problems, or autism spectrum conditions. We want to know whether certain groups of children benefit more from starting with stimulants, and others from starting with non-stimulants.
  • How do the two strategies compare for side effects, treatment satisfaction, and staying on medication?
    We will compare how often children stop or switch medications because of side effects or lack of benefit, and how satisfied children, parents, and clinicians are with care under each strategy.
  • What are the longer-term outcomes over a year?
    We are interested not only in short-term symptom relief, but also in how children are doing months later in school, at home, with friends, and emotionally.

Our goal is to give families and clinicians clear, practical evidence to support a truly shared decision: “Given this specific child, should we start with a stimulant or a non-stimulant?”

Who will be in the study?

We will enroll about 1,000 children and adolescents, ages 6 to 16, who:

  • Have ADHD and are starting or restarting medication treatment, and
  • Are being treated in everyday pediatric and mental health clinics at large children’s hospitals and health systems across the United States.

We will include children with common co-occurring conditions (such as anxiety, depression, learning or developmental disorders) so that the results reflect the “real-world” children seen in clinics, not just highly selected research volunteers.

How will the treatments be assigned?

This is a randomized comparative effectiveness trial, which means:

  • Each child will be randomly assigned (like flipping a coin) to one of two strategies:


    1. Stimulant-first strategy – the clinician starts treatment with a stimulant medication.
    2. Non-stimulant-first strategy – the clinician starts treatment with a non-stimulant medication.
  • Within the assigned class, the clinician and family still choose the specific medicine and dose, and can adjust treatment as they normally would. This keeps the study as close as possible to real-world practice.
  • The randomization is 1:1, so about half the participants will start with stimulants and half with non-stimulants.

Parents and clinicians will know which type of medicine the child is taking, as in usual care. However, the experts who rate how much each child has improved using our main outcome measure will not be told which treatment strategy the child received. This helps keep their ratings unbiased.

What will participants be asked to do?

Each family will be followed for 12 months. We will collect information at:

  • Baseline (before or just as medication is started)
  • Early follow-up (about weeks 3 and 6)
  • Later follow-up (about 3 months, 6 months, and 12 months)

At these times:

  • Parents will complete questionnaires about ADHD symptoms, behavior, emotions, and daily functioning at home and in the community.
  • Teachers will complete brief forms about the child’s behavior and performance at school.
  • Children and teens (when old enough) will complete age-appropriate questionnaires about their own mood, behavior, and quality of life.
  • A specially trained clinical rater, using all available information but blinded to treatment strategy, will give a global rating of how much the child has improved overall, not just in ADHD symptoms.

We will also track:

  • Medication changes (stopping, switching, or adding medicines)
  • Reasons for any changes (side effects, lack of benefit, or other reasons)
  • Any serious side effects or safety concerns

Data will be entered into a secure, HIPAA-compliant research database. Study staff at each site will work closely with families to make participation as convenient as possible, including offering flexible visit schedules and electronic options for completing forms when feasible.

How will we analyze the results?

Using standard statistical methods, we will:

  • Compare the overall improvement of children in the stimulant-first group versus the non-stimulant-first group after 12 months.
  • Look at differences in side effects, discontinuation rates, and treatment satisfaction between the two strategies.
  • Examine which child characteristics (such as age, sex, co-occurring conditions, and baseline severity) are linked to better results with one strategy versus the other.
  • Analyze long-term outcomes, including functioning at home, school, and with peers, and emotional well-being.

All analyses will follow the “intention-to-treat” principle, meaning we compare children based on the strategy they were originally assigned to, even if their medication is later changed. This mirrors real-world decision-making: once you choose a starting strategy, what tends to happen over time?

Why is this study necessary now?

This study addresses a critical, timely gap in ADHD care:

  • Guidelines are ahead of the evidence.
    Existing guidelines almost always recommend stimulants as the first-line medication, yet careful reviews of the evidence show that direct comparisons of stimulant-first versus non-stimulant-first strategies are limited. We do not have strong data to say that starting with stimulants is clearly superior for all children.
  • Real-world children are more complex than those in past trials.
    Most prior medication trials have excluded children with multiple conditions, serious family stressors, or other complexities that are very common in everyday practice. Our pragmatic, multi-site design will include these children and thus produce findings that are directly relevant to front-line clinicians and families.
  • Families and clinicians are asking for alternatives.
    Parents often express worries about stimulant side effects, long-term use, and stigma. Clinicians would like clearer guidance about when a non-stimulant is a reasonable first choice. At the same time, stimulant shortages and concerns about misuse and diversion have exposed the risks of relying almost entirely on one class of medications.
  • The timing is right to influence practice and policy.
    Our team includes parents, youth advocates, frontline clinicians, and national networks that link major children’s hospitals. These partners have helped shape the study from the beginning and will help interpret and share the results. This means that if starting with non-stimulants is found to be similarly effective and safer or more acceptable for some children, practice patterns and guidelines can change rapidly.

In short, this study is needed now to move ADHD medication decisions beyond “one-size-fits-all.” By rigorously comparing stimulant-first and non-stimulant-first strategies in real-world settings, and by focusing on what matters most to children and families overall functioning, side effects, and long-term well-being, we aim to give patients, parents, and clinicians the information they need to choose the best starting treatment for each child.

This project was conceived by Professor Stephen V. Faraone, PhD (SUNY Upstate Medical University, Department of Psychiatry, Syracuse, NY) and Professor Jeffrey H. Newcorn, MD (Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY).   It will be conducted at nine sites across the USA.

January 2, 2026

Evidence-Based Interventions for ADHD

EBI-ADHD: 

If you live with ADHD, treat ADHD, or write about ADHD, you’ve probably run into the same problem: there’s a ton of research on treatments, but it’s scattered across hundreds of papers that don’t talk to each other.  The EBI-ADHD website fixes that. 

EBI-ADHD (Evidence-Based Interventions for ADHD) is a free, interactive platform that pulls together the best available research on how ADHD treatments work and how safe they are. It’s built for clinicians, people with ADHD and their families, and guideline developers who need clear, comparable information rather than a pile of PDFs. EBI-ADHD Database  The site is powered by 200+ meta-analyses covering 50,000+ participants and more than 30 different interventions.  These include medications, psychological therapies, brain-stimulation approaches, and lifestyle or “complementary” options. 

The heart of the site is an interactive dashboard.  You can: 

  1. Choose an age group: children (6–17), adolescents (13–17), or adults (18+). 
  1. Choose a time frame: results at 12, 26, or 52 weeks. 
  1. Choose whether to explore by intervention (e.g., methylphenidate, CBT, mindfulness, diet, neurofeedback) or by outcome (e.g., ADHD symptoms, functioning, adverse events), depending on what’s available. EBI-ADHD Database 

The dashboard then shows an evidence matrix: a table where each cell is a specific treatment–outcome–time-point combination. Each cell tells you two things at a glance: 

  1. How big the effect is, compared to placebo or another control (large benefit, small benefit, no effect, small negative impact, large negative impact). 
  1. How confident we can be in that result (high, moderate, low, or very low certainty).  

Clicking a cell opens more detail: effect sizes, the underlying meta-analysis, and how the certainty rating was decided. 

EBI-ADHD is not just a curated list of papers. It’s built on a formal umbrella review of ADHD interventions, published in The BMJ in 2025. That review re-analyzed 221 meta-analyses using a standardized statistical pipeline and rating system. 

The platform was co-created with 100+ clinicians and 100+ people with lived ADHD experience from around 30 countries and follows the broader U-REACH framework for turning complex evidence into accessible digital tools.  

Why it Matters 

ADHD is one of the most studied conditions in mental health, yet decisions in everyday practice are still often driven by habit, marketing, or selective reading of the literature. EBI-ADHD offers something different: a transparent, continuously updated map of what we actually know about ADHD treatments and how sure we are about it. 

In short, it’s a tool to move conversations about ADHD care from “I heard this works” to “Here’s what the best current evidence shows, and let’s decide together what matters most for you.” 

Meta-analysis Finds Tenuous Links Between ADHD and Thyroid Hormone Dysregulation

The Background:

Meta-analyses have previously suggested a link between maternal thyroid dysfunction and neurodevelopmental disorders (NDDs) in children, though some studies report no significant difference. Overweight and obesity are more common in children and adolescents with NDDs. Hypothyroidism is often associated with obesity, which may result from reduced energy expenditure or disrupted hormone signaling affecting growth and appetite. These hormone-related parameters could potentially serve as biomarkers for NDDs; however, research findings on these indicators vary. 

The Study:

A Chinese research group recently released a meta-analysis examining the relationship between neurodevelopmental disorders (NDDs) and hormone levels – including thyroid, growth, and appetite hormones – in children and adolescents.  

The analysis included peer-reviewed studies that compared hormone levels – such as thyroid hormones (FT3, FT4, TT3, TT4, TSH, TPO-Ab, or TG-Ab), growth hormones (IGF-1 or IGFBP-3), and appetite-related hormones (leptin, ghrelin, or adiponectin) – in children and adolescents with NDDs like ADHD, against matched healthy controls. To be included, NDD cases had to be first-diagnosis and medication-free, or have stopped medication before testing. Hormone measurements needed to come from blood, urine, or cerebrospinal fluid samples, and all studies were required to provide both means and standard deviations for these measurements. 

Meta-analysis of nine studies encompassing over 5,700 participants reported a medium effect size increase in free triiodothyronine (FT3) in children and adolescents with ADHD relative to healthy controls. There was no indication of publication bias, but variation between individual study outcomes (heterogeneity) was very high. Further analysis showed FT3 was only significantly elevated in the predominantly inattentive form of ADHD (three studies), again with medium effect size, but not in the hyperactive/impulsive and combined forms

Meta-analysis of two studies combining more than 4,800 participants found a small effect size increase in thyroid peroxidase antibody (TPO-Ab) in children and adolescents with ADHD relative to healthy controls. In this case, the two studies had consistent results. Because only two studies were involved, there was no way to evaluate publication bias. 

The remaining thyroid hormone meta-analyses, involving 6 to 18 studies and over 5,000 participants in each instance, found no significant differences in levels between children and adolescents with ADHD and healthy controls

Meta-analyses of six studies with 317 participants and two studies with 192 participants found no significant differences in growth hormone levels between children and adolescents with ADHD and healthy controls. 

Finally, meta-analyses of nine studies with 333 participants, five studies with 311 participants, and three studies with 143 participants found no significant differences in appetite-related hormone levels between children and adolescents with ADHD and healthy controls. 

The Conclusion:

The team concluded that FT3 and TPO-Ab might be useful biomarkers for predicting ADHD in youth. However, since FT3 was only linked to inattentive ADHD, and TPO-Ab’s evidence came from just two studies with small effects, this conclusion may overstate the meta-analysis results. 

Our Take-Away:

Overall, this meta-analysis found only limited evidence that hormone differences are linked to ADHD. One thyroid hormone (FT3) was higher in children with ADHD—mainly in the inattentive presentation—but the findings varied widely across studies. Another marker, TPO-Ab, showed a small increase, but this came from only two studies, making the result less certain. For all other thyroid, growth, and appetite-related hormones, the researchers found no meaningful differences between children with ADHD and those without. While FT3 and TPO-Ab may be worth exploring in future research, the current evidence is not strong enough to consider them reliable biomarkers.

 

December 15, 2025