January 12, 2022
Noting that to date, no study investigated potential behavioral and neural markers in adults with subthreshold ADHD as compared to adults with full syndrome ADHD and healthy controls, the German team of researchers at the University of Tübingen out to do just that, recruiting volunteers through flyers and advertisements.
Their ADHD sample consisted of 113 adults between 18 and 60 years of age (mean age 38) who fulfilled the DSM-IV-TR criteria of ADHD and were either not on medication or a steady dose of medication over the prior two months.
Another 46 participants (also mean age 38), whose symptoms did not reach the DSM-IV-TR criteria, were assigned to the group with subthreshold ADHD.
The control sample was comprised of 42 healthy participants (mean age 37).
Individuals with schizophrenia, bipolar disorder, borderline personality disorder, epilepsy, or traumatic brain injury were excluded from the sample, as were those with current substance abuse or dependence.
All participants were German-speaking Caucasians. There were no significant differences in gender, age, education, or verbal/nonverbal intelligence among the three groups.
Participants first completed an online pre-screening, which was followed up with an interview to confirm the ADHD diagnosis.
ADHD impairs executive functions, "defined as the 'top-down' cognitive abilities for maintaining problem-solving skills to achieve future goals." The researchers explored three categories of executive functioning: 1) capacity for inhibition, "the ability to inhibit dominant, automatic, or prepotent responses when necessary- 2) ability to shift, enabling smooth switching between tasks or mental sets; and 3) ability to update, "updating and monitoring of working memory representations." Participants took a battery of neuropsychological tests to assess performance in each category.
Significant differences emerged between the group with ADHD and healthy controls in all measures except one: the STROOP Reading test. But there were no significant differences between participants suffering from subthreshold and full-syndrome ADHD. Nor were there any significant differences between those with subthreshold ADHD and healthy controls.
The researchers also recorded electroencephalograms(EEGs) for each participant. In healthy individuals, there is little to no association between resting-state EEG spectral power measures and executive functions. In individuals with ADHD, some studies have indicated increased theta-to-beta ratios, while others have found no significant differences. This study found no significant differences between the three groups.
The authors concluded, "The main results of the study can be summarized as follows: First, increased executive function deficits (in updating, inhibition, and shifting functions) could be observed in the full syndrome ADHD as compared to the healthy control group while, on the electrophysiological level, no differences in the theta to the beta ratio between these groups were found. Second, we observed only slightly impaired neuropsychological functions and no abnormal electrophysiological activity in the subthreshold ADHD sample. Taken together, our data suggest some practical uses of the assessment of objective cognitive markers but no additional value of examining electrophysiological characteristics in the diagnosis of subthreshold and full syndrome ADHD in adulthood."
They added, "These findings deeply question the value of including resting EEG markers into the diagnostic procedure and also have implications for standard neurofeedback protocols frequently used in the treatment of ADHD, where patients are trained to reduce their theta power while simultaneously increasing beta activity."
Alexander Schneider, Nina Maria Höhnle, Michael Schönenberg, "Cognitive and electrophysiological markers of the adult full syndrome and subthreshold attention-deficit/hyperactivity disorder," Journal of Psychiatric Research(2020)127,80-86,https://doi.org/10.1016/j.jpsychires.2020.05.004.