October 1, 2024
ADHD (Attention-Deficit/Hyperactivity Disorder) has often been seen as a condition that mainly affects boys, especially when it comes to hyperactivity. However, a new study challenges this idea by showing that hyperactivity is also common in women with ADHD, pointing out the need for better diagnoses.
The study included 13,179 adults with ADHD and 1,910 adults without it. Researchers measured how active participants were using a special test, looking at both "provoked" activity (activity triggered by specific tasks that puts the brain “online”) and "basal" activity (resting or natural activity levels when the brain is “offline”). The study included almost an equal number of men and women, with the goal of finding out if there were any differences between the sexes in ADHD diagnosis, particularly in hyperactivity.
The results were eye-opening. Although men generally showed higher levels of activity when the brain was online, both men and women with ADHD had much higher levels of both offline and online activity compared to people without ADHD. Specifically, those with ADHD had about twice the resting activity and three times the provoked activity compared to those without the disorder.
A key finding was that women with ADHD had hyperactivity levels similar to men with ADHD. This goes against the common belief that women with ADHD don’t show hyperactivity or show it less. It suggests that hyperactivity in women may be missed or misunderstood due to societal expectations or differences in behavior.
These findings have big implications. They suggest that the way we currently understand ADHD, especially hyperactivity in women, might be wrong. By recognizing that women with ADHD can have significant hyperactivity, doctors can diagnose ADHD more accurately. This could lead to earlier treatment and better management of ADHD in women, which might also lower the chances of related problems like anxiety or depression.
The study highlights the importance of thinking about gender differences when diagnosing and treating ADHD. By realizing that hyperactivity isn't just a "male" trait, we can better support everyone with ADHD and ensure they get the right care. As research on ADHD continues, it’s important to challenge old assumptions and take a more inclusive approach to understanding and treating the disorder.
Wettstein R, Navarro Ovando V, Pirgon E, Kroesen J, Wettstein K, Kroesen H, Mathôt R, Dumont G. Absent or Hidden? Hyperactivity in Females With ADHD. J Atten Disord. 2024 Aug 19:10870547241273152. doi: 10.1177/10870547241273152. Epub ahead of print. PMID: 39161237.
A recent study delved into the connection between fidgeting and cognitive performance in adults with Attention-Deficit/Hyperactivity Disorder. Recognizing that hyperactivity often manifests as fidgeting, the researchers sought to understand its role in attention and performance during cognitively demanding tasks. They designed a framework to quantify meaningful fidgeting variables using actigraphy devices.
(Note: Actigraphy is a non-invasive method of monitoring human rest/activity cycles. It involves the use of a small, wearable device called an actigraph or actimetry sensor, typically worn on the wrist, similar to a watch. The actigraph records movement data over extended periods, often days to weeks, to track sleep patterns, activity levels, and circadian rhythms. In this study, actigraphy devices were used to measure fidgeting by recording the participants' movements continuously during the cognitive task. This data provided objective, quantitative measures of fidgeting, allowing the researchers to analyze its relationship with attention and task performance.)
The study involved 70 adult participants aged 18-50, all diagnosed with ADHD. Participants underwent a thorough screening process, including clinical interviews and ADHD symptom ratings. The analysis revealed that fidgeting increased during correct trials, particularly in participants with consistent reaction times, suggesting that fidgeting helps sustain attention. Interestingly, fidgeting patterns varied between early and later trials, further highlighting its role in maintaining focus over time.
Additionally, a correlation analysis validated the relevance of the newly defined fidget variables with ADHD symptom severity. This finding suggests that fidgeting may act as a compensatory mechanism for individuals with ADHD, aiding in their ability to maintain attention during tasks requiring cognitive control.
This study provides valuable insights into the role of fidgeting in adults with ADHD, suggesting that it may help sustain attention during challenging cognitive tasks. By introducing and validating new fidget variables, the researchers hope to standardize future quantitative research in this area. Understanding the compensatory role of fidgeting can lead to better management strategies for ADHD, emphasizing the potential benefits of movement for maintaining focus.
Recent advancements in brain network analysis may help researchers better understand the dysfunctions of the complex neural networks associated with ADHD.
Controllability refers to the ability to steer the brain's activity from one state to another. In simpler terms, it’s about how different regions of the brain can influence and regulate each other to maintain normal functioning or respond to tasks and stimuli.
Researchers examined functional MRI (fMRI) data from 143 healthy individuals and 102 ADHD patients, they focused on a specific metric called the node controllability index (CA-scores). This metric helps quantify how different brain regions contribute to overall brain function.
The study revealed that individuals with ADHD exhibit significantly different CA-scores in various brain regions compared to healthy controls. These regions include:
These areas are crucial for processes such as decision-making, sensory processing, and attention.
This new study suggests that the controllability index might be a more effective tool in identifying brain regions that work differently in those with ADHD. This means that controllability could provide a clearer picture of the brain networks associated with ADHD.
Although ADHD still cannot be diagnosed with this type of imaging, studies such as this highlight the complexity of the disorder and provide new avenues for future research.
Attention-Deficit/Hyperactivity Disorder (ADHD) in adults is commonly treated with stimulant medications such as methylphenidate and amphetamines. However, not all patients respond well to these stimulants or tolerate them effectively. For such cases, non-stimulant medications provide an alternative treatment approach.
Recent research by Brancati et al. reviews the efficacy and safety of non-stimulant medications for adult ADHD. Atomoxetine, a well-studied non-stimulant, has shown significant effectiveness in treating ADHD symptoms in adults. The review highlights the importance of considering dosage, treatment duration, safety, and the presence of psychiatric comorbidities when prescribing atomoxetine.
Additionally, certain antidepressants, including tricyclic compounds, bupropion, and viloxazine, which possess noradrenergic or dopaminergic properties, have demonstrated efficacy in managing adult ADHD. Antihypertensive medications, especially guanfacine, have also been found effective. Other medications like memantine, metadoxine, and mood stabilizers show promise, whereas treatments like galantamine, antipsychotics, and cannabinoids have not yielded positive results.
The expert opinion section of the review emphasizes that while clinical guidelines primarily recommend atomoxetine as a second-line treatment, several other non-stimulant options can be utilized to tailor treatments based on individual patient needs and comorbid conditions. Despite these advancements, the authors call for further research to develop and refine more personalized treatment strategies for adults with ADHD.
This review underscores the growing landscape of non-stimulant treatment options, offering hope for more personalized and effective management of ADHD in adults.
Background:
Stimulants, such as methylphenidate and amphetamines, are currently considered effective medications for treating ADHD. However, approximately one-third of patients do not have an adequate response to these treatments. Additionally, long-term adherence is relatively low, with only about half of the patients still using methylphenidate after six years.
Recently, there has been increasing attention to the concept of microdosing with psychedelic drugs such as psilocybin and LSD. A microdose typically ranges from one-tenth to one-twentieth of a recreational dose and does not produce noticeable perceptual effects or interfere with daily activities.
The Study:
A European research team recently published the findings of the first double-blind, placebo-controlled randomized clinical trial examining the safety and efficacy of repeated low doses of LSD in adults diagnosed with ADHD.
The six-week trial took place at University Hospital in Basel, Switzerland, and Maastricht University, Netherlands. Participants, aged 18 to 65, had clinical diagnoses of ADHD with moderate to severe symptoms.
The team excluded persons with a past or present diagnosis of psychotic disorders, substance use disorders, or other psychiatric or somatic disorders likely to require hospitalization or treatments.
Participants were randomly assigned in a 1:1 ratio to receive either LSD or placebo. Neither study staff nor participants were aware of the assignments until the conclusion of the trial.
During the six-week trial, participants received twice-weekly doses on-site, amounting to a total of 12 doses. Following the first and final doses, participants were asked to determine whether they had been administered LSD or a placebo in order to assess blinding. Four weeks after the conclusion of the microdosing period, participants returned for an evaluation of the treatment's safety and efficacy.
Twenty-seven of the 53 participants were randomized to receive the LSD microdosing treatment in a liquid solution, and 26 to receive placebo. Placebo consisted of the same drinking solution, minus the microdose of LSD.
The average age was 37, and 42% of participants were female. Forty-six of the 53 participants completed the study.
Out of 29 participants, 21 from the LSD group and eight from the placebo group correctly guessed their allocation, totaling 63% overall.
As assessed through the Adult ADHD Investigator Symptom Rating Scale, ADHD symptoms improved by 7.1 points in the LSD group and 8.9 points in the placebo group, with no significant difference between them.
Regarding safety, the LSD group experienced nearly double the adverse events compared to the placebo group. None of the events in either group were classified as serious. The five most frequent adverse events were headache, nausea, fatigue, insomnia, and visual alterations, occurring around three times more frequently in the LSD group than in the placebo group.
The team concluded, “although repeated low-dose LSD administration was safe in an outpatient setting, it failed to demonstrate efficacy compared with placebo in improving ADHD symptoms among adults.”
Conclusion: Microdosing with LSD did not offer significant advantages over placebo in treating ADHD symptoms, despite being physically safe and well tolerated in the trial setting. This suggests that further research is needed to explore alternative treatments for ADHD.
------
Struggling with side effects or not seeing improvement in your day-to-day life? Dive into a step-by-step journey that starts with the basics of screening and diagnosis, detailing the clinical criteria healthcare professionals use so you can be certain you receive an accurate evaluation. This isn’t just another ADHD guide—it’s your toolkit for getting the care you deserve. This is the kind of care that doesn’t just patch up symptoms but helps you unlock your potential and build the life you want. Whether you’ve just been diagnosed or you’ve been living with ADHD for years, this booklet is here to empower you to take control of your healthcare journey.
Proceeds from the sale of this book are used to support www.ADHDevidence.org.
Attention Deficit Hyperactivity Disorder (ADHD) is a common condition affecting children and adolescents worldwide, characterized by symptoms such as hyperactivity, impulsivity, and inattention. While traditional treatments like medication and behavioral therapy are often used, some individuals are turning to complementary and alternative therapies (CAM) for help. One such option gaining attention is acupuncture. But does it really work for ADHD?
A recent comprehensive study aimed to evaluate the effectiveness of acupuncture in treating ADHD symptoms. Here’s a breakdown of the findings, with a focus on the age groups included in the research and what these findings could mean for ADHD treatment options.
The study in question conducted a systematic review and meta-analysis (SR/MA) of acupuncture trials for ADHD, comparing its effects to traditional treatments such as pharmacotherapy and behavioral therapy. The researchers focused on acupuncture’s impact on core ADHD symptoms like hyperactivity, impulsivity, inattention, and conduct problems, while also exploring how acupuncture might help with other issues, such as learning difficulties and psychosomatic symptoms.
One key feature of this study was the inclusion of a broad age range of participants, specifically children and adolescents. These two groups are the most commonly diagnosed with ADHD, and their responses to treatments can vary significantly. Understanding how acupuncture works for these age groups is critical for evaluating its effectiveness as an ADHD treatment.
Here’s what the study found across the different age groups:
Despite these promising results, the study also highlighted several limitations:
In short, and as is so often the way of evidence-based medicine, we still can’t say with absolute certainty one way or the other. These studies may show promise in improving hyperactivity, impulsivity, inattention, and conduct problems– in both children and adolescents. However, the evidence is not yet strong enough to recommend it as a primary treatment. While it may serve as a helpful complement to standard therapies, especially for those struggling with medication side effects or access to behavioral therapy, more research is needed to establish its effectiveness.
This New York Times article, “5 Takeaways from New Research about ADHD”, earns a poor grade for accuracy. Let’s break down their (often misleading and frequently inaccurate) claims about ADHD.
The Claim: A.D.H.D. is hard to define/ No ADHD Biomarkers exist
The Reality: The claim that ADHD is hard to define “because scientists haven’t found a single biological marker” is misleading at best. While it is true that no biomarker exists, decades of rigorous research using structured clinical interviews and standardized rating scales show that ADHD is reliably diagnosed. Decades of validation research consistently show that ADHD is indeed a biologically-based disorder. One does not need a biomarker to draw that conclusion and recent research about ADHD has not changed that conclusion.
Additionally, research has in fact confirmed that genetics do play a role in the development of ADHD and several genes associated with ADHD have been identified.
The Claim: The efficacy of medication wanes over time
The Reality: The article’s statement that medications like Adderall or Ritalin only provide short-term benefits that fade over time is wrong. It relies almost entirely on one study—the Multimodal Treatment Study of ADHD (MTA). In the MTA study, the relative advantage of medication over behavioral treatments diminished after 36 months. This was largely because many patients who had not initially been given medication stopped taking it and many who had only been treated with behavior therapy suddenly began taking medication. The MTA shows that patients frequently switched treatments. It does not overturn other data documenting that these medications are highly effective. Moreover, many longitudinal studies clearly demonstrate sustained benefits of ADHD medications in reducing core symptoms, psychiatric comorbidity, substance abuse, and serious negative outcomes, including accidents, and school dropout rates. A study of nearly 150,000 people with ADHD in Sweden concluded “Among individuals diagnosed with ADHD, medication initiation was associated with significantly lower all-cause mortality, particularly for death due to unnatural causes”. The NY Times’ claim that medications lose their beneficial effects over time ignores compelling evidence to the contrary.
The Claim: Medications don’t help children with ADHD learn
The Reality: ADHD medications are proven to reliably improve attention, increase time spent on tasks, and reduce disruptive behavior, all critical factors directly linked to better academic performance.The article’s assertion that ADHD medications improve only classroom behavior and do not actually help students learn also oversimplifies and misunderstands the research evidence. While medication alone might not boost IQ or cognitive ability in a direct sense, extensive research confirms significant objective improvements in academic productivity and educational success—contrary to the claim made in the article that the medication’s effect is merely emotional or perceptual, rather than genuinely educational.
For example, a study of students with ADHD who were using medication intermittingly concluded “Individuals with ADHD had higher scores on the higher education entrance tests during periods they were taking ADHD medication vs non-medicated periods. These findings suggest that ADHD medications may help ameliorate educationally relevant outcomes in individuals with ADHD.”
The Claim: Changing a child’s environment can change his or her symptoms.
The Reality: The Times article asserts that ADHD symptoms are influenced by environmental fluctuations and thus might not have their roots in neurobiology. We have known for many years that the symptoms of ADHD fluctuate with environmental demands. The interpretation of this given by the NY Times is misleading because it confuses symptom variability with underlying causes. Many disorders with well-established biological origins are sensitive to environmental factors, yet their biology remains undisputed.
For example, hypertension is unquestionably a biologically based condition involving genetic and physiological factors. However, it is also well-known that environmental stressors, dietary
habits, and lifestyle factors can significantly worsen or improve hypertension. Similarly, asthma is biologically rooted in inflammation and airway hyper-reactivity, but environmental triggers such as allergens, pollution, or even emotional stress clearly impact symptom severity. Just as these environmental influences on hypertension or asthma do not negate their biological basis, the responsiveness of ADHD symptoms to environmental fluctuations (e.g., improvements in classroom structure, supportive home life) does not imply that ADHD lacks neurobiological roots. Rather, it underscores that ADHD, like many medical conditions, emerges from the interplay between underlying biological vulnerabilities and environmental influences.
Claim: There is no clear dividing line between those who have A.D.H.D. and those who don’t.
The Reality: This is absolutely and resoundingly false. The article’s suggestion that ADHD diagnosis is arbitrary because ADHD symptoms exist on a continuum rather than as a clear-cut, binary condition is misleading. Although it is true that ADHD symptoms—like inattention, hyperactivity, and impulsivity—do vary continuously across the population, the existence of this continuum does not make the diagnosis arbitrary or invalidate the disorder’s biological basis. Many well-established medical conditions show the same pattern. For instance, hypertension (high blood pressure) and hypercholesterolemia (high cholesterol) both involve measures that are continuously distributed. Blood pressure and cholesterol levels exist along a continuum, yet clear diagnostic thresholds have been carefully established through decades of clinical research. Their continuous distribution does not lead clinicians to question whether these conditions have biological origins or whether diagnosing an individual with hypertension or hypercholesterolemia is arbitrary. Rather, it underscores that clinical decisions and diagnostic thresholds are established using evidence about what levels lead to meaningful impairment or increased risk of negative health outcomes. Similarly, the diagnosis of ADHD has been meticulously defined and refined over many decades using extensive empirical research, structured clinical interviews, and validated rating scales. The diagnostic criteria developed by experts carefully delineate the point at which symptoms become severe enough to cause significant impairment in an individual’s daily functioning. Far from being arbitrary, these thresholds reflect robust scientific evidence that individuals meeting these criteria face increased risks for the serious impairments in life including accidents, suicide and premature death.
The existence of milder forms of ADHD does not undermine the validity of the diagnosis; rather, it emphasizes the clinical reality that people experience varying degrees of symptom severity.
Moreover, acknowledging variability in severity has always been a core principle in medicine. Clinicians routinely adjust treatments to meet individual patient needs. Not everyone diagnosed with hypertension receives identical medication regimens, nor does everyone with elevated cholesterol get prescribed the same intervention. Similarly, people with ADHD receive personalized treatment plans tailored to the severity of their symptoms, their specific impairments, and their individual circumstances. This personalization is not evidence of arbitrariness; it is precisely how evidence-based medicine is practiced. In sum, the continuous nature of ADHD symptoms is fully compatible with a biologically-based diagnosis that has substantial evidence for validity, and acknowledging symptom variability does not render diagnosis arbitrary or diminish its clinical importance.
In sum, readers seeking a balanced, evidence-based understanding of ADHD deserve clearer, more careful reporting. By overstating diagnostic uncertainty, selectively interpreting research about medication efficacy, and inaccurately portraying the educational benefits of medication, this article presents an overly simplistic, misleading picture of ADHD.