Cookie Preferences
By clicking, you agree to store cookies on your device to enhance navigation, analyze usage, and support marketing. More Info
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

EBI-ADHD:
If you live with ADHD, treat ADHD, or write about ADHD, you’ve probably run into the same problem: there’s a ton of research on treatments, but it’s scattered across hundreds of papers that don’t talk to each other. The EBI-ADHD website fixes that.
EBI-ADHD (Evidence-Based Interventions for ADHD) is a free, interactive platform that pulls together the best available research on how ADHD treatments work and how safe they are. It’s built for clinicians, people with ADHD and their families, and guideline developers who need clear, comparable information rather than a pile of PDFs. EBI-ADHD Database The site is powered by 200+ meta-analyses covering 50,000+ participants and more than 30 different interventions. These include medications, psychological therapies, brain-stimulation approaches, and lifestyle or “complementary” options.
The heart of the site is an interactive dashboard. You can:
The dashboard then shows an evidence matrix: a table where each cell is a specific treatment–outcome–time-point combination. Each cell tells you two things at a glance:
Clicking a cell opens more detail: effect sizes, the underlying meta-analysis, and how the certainty rating was decided.
EBI-ADHD is not just a curated list of papers. It’s built on a formal umbrella review of ADHD interventions, published in The BMJ in 2025. That review re-analyzed 221 meta-analyses using a standardized statistical pipeline and rating system.
The platform was co-created with 100+ clinicians and 100+ people with lived ADHD experience from around 30 countries and follows the broader U-REACH framework for turning complex evidence into accessible digital tools.
Why it Matters
ADHD is one of the most studied conditions in mental health, yet decisions in everyday practice are still often driven by habit, marketing, or selective reading of the literature. EBI-ADHD offers something different: a transparent, continuously updated map of what we actually know about ADHD treatments and how sure we are about it.
In short, it’s a tool to move conversations about ADHD care from “I heard this works” to “Here’s what the best current evidence shows, and let’s decide together what matters most for you.”
Gosling CJ, Garcia-Argibay M, De Prisco M, Arrondo G, Ayrolles A, Antoun S, Caparos S, Catalán A, Ellul P, Dobrosavljevic M, Farhat LC, Fico G, Eudave L, Groenman AP, Højlund M, Jurek L, Nourredine M, Oliva V, Parlatini V, Psyllou C, Salazar-de-Pablo G, Tomlinson A, Westwood SJ, Cipriani A, Correll CU, Yon DK, Larsson H, Ostinelli EG, Shin JI, Fusar-Poli P, Ioannidis JPA, Radua J, Solmi M, Delorme R, Cortese S. Benefits and harms of ADHD interventions: umbrella review and platform for shared decision making. BMJ. 2025 Nov 26;391:e085875. doi: 10.1136/bmj-2025-085875. PMID: 41297970; PMCID: PMC12651917
A Chinese research team performed two types of meta-analyses to compare the risk of suicide for ADHD patients taking ADHD medication as opposed to those not taking medication.
The first type of meta-analysis combined six large population studies with a total of over 4.7 million participants. These were located on three continents - Europe, Asia, and North America - and more specifically Sweden, England, Taiwan, and the United States.
The risk of suicide among those taking medication was found to be about a quarter less than for unmediated individuals, though the results were barely significant at the 95 percent confidence level (p = 0.49, just a sliver below the p = 0.5 cutoff point). There were no significant differences between males and females, except that looking only at males or females reduced sample size and made results non-significant.
Differentiating between patients receiving stimulant and non-stimulant medications produced divergent outcomes. A meta-analysis of four population studies covering almost 900,000 individuals found stimulant medications to be associated with a 28 percent reduced risk of suicide. On the other hand, a meta-analysis of three studies with over 62,000 individuals found no significant difference in suicide risk for non-stimulant medications. The benefit, therefore, seems limited to stimulant medication.
The second type of meta-analysis combined three within-individual studies with over 3.9 million persons in the United States, China, and Sweden. The risk of suicide among those taking medication was found to be almost a third less than for unmediated individuals, though the results were again barely significant at the 95 percent confidence level (p =0.49, just a sliver below the p = 0.5 cutoff point). Once again, there were no significant differences between males and females, except that looking only at males or females reduced the sample size and made results non-significant.
Differentiating between patients receiving stimulant and non-stimulant medications once again produced divergent outcomes. Meta-analysis of the same three studies found a 25 percent reduced risk of suicide among those taking stimulant medications. But as in the population studies, a meta-analysis of two studies with over 3.9 million persons found no reduction in risk among those taking non-stimulant medications.
A further meta-analysis of two studies with 3.9 million persons found no reduction in suicide risk among persons taking ADHD medications for 90 days or less, "revealing the importance of duration and adherence to medication in all individuals prescribed stimulants for ADHD."
The authors concluded, "exposure to non-stimulants is not associated with a higher risk of suicide attempts. However, a lower risk of suicide attempts was observed for stimulant drugs. However, the results must be interpreted with caution due to the evidence of heterogeneity ..."
With the growth of the Internet, we are flooded with information about attention deficit hyperactivity disorder from many sources, most of which aim to provide useful and compelling "facts" about the disorder. But, for the cautious reader, separating fact from opinion can be difficult when writers have not spelled out how they have come to decide that the information they present is factual.
My blog has several guidelines to reassure readers that the information they read about ADHD is up-to-date and dependable. They are as follows:
Nearly all the information presented is based on peer-reviewed publications in the scientific literature about ADHD. "Peer-reviewed" means that other scientists read the article and made suggestions for changes and approved that it was of sufficient quality for publication. I say "nearly all" because in some cases I've used books or other information published by colleagues who have a reputation for high-quality science.
When expressing certainty about putative facts, I am guided by the principles of evidence-based medicine, which recognizes that the degree to which we can be certain about the truth of scientific statements depends on several features of the scientific papers used to justify the statements, such as the number of studies available and the quality of the individual studies. For example, compare these two types of studies. One study gives drug X to 10 ADHD patients and reported that 7 improved. Another gave drug Y to 100 patients and a placebo to 100 other patients and used statistics to show that the rate of improvement was significantly greater in the drug-treated group. The second study is much better and much larger, so we should be more confident in its conclusions. The rules of evidence are fairly complex and can be viewed at the Oxford Center for Evidenced Based Medicine (OCEBM;http://www.cebm.net/).
The evidenced-based approach incorporates two types of information: a) the quality of the evidence and b) the magnitude of the treatment effect. The OCEBM levels of evidence quality are defined as follows (higher numbers are better:
Non-randomized, controlled studies. In these studies, the treatment group is compared to a group that receives a placebo treatment, which is a fake treatment not expected to work.
It is possible to have high-quality evidence proving that a treatment works but the treatment might not work very well. So it is important to consider the magnitude of the treatment effect, also called the "effect size" by statisticians. For ADHD, it is easiest to think about ranking treatments on a ten-point scale. The stimulant medications have a quality rating of 5 and also have the strongest magnitude of effect, about 9 or 10.Omega-3 fatty acid supplementation 'works' with a quality rating of 5, but the score for the magnitude of the effect is only 2, so it doesn't work very well. We have to take into account patient or parent preferences, comorbid conditions, prior response to treatment, and other issues when choosing a treatment for a specific patient, but we can only use an evidence-based approach when deciding which treatments are well-supported as helpful for a disorder.
A new large-scale study has shed light on which treatments for attention-deficit/hyperactivity disorder (ADHD) in adults are most effective and best tolerated.
Researchers analyzed 113 randomized controlled trials involving nearly 15,000 adults diagnosed with ADHD. These studies included medications (like stimulants and atomoxetine), psychological therapies (such as cognitive behavioral therapy), and newer approaches like neurostimulation.
The Findings
Stimulant medications (lisdexamfetamine and methylphenidate) as well as selective norepinephrine reuptake inhibitors (SNRI) (atomoxetine) were the only treatments that consistently reduced core ADHD symptoms—both from the perspective of patients and clinicians. It may be worth noting that atomoxetine, while effective, was less well tolerated, with more people dropping out due to side effects.
Psychological therapies such as CBT, mindfulness, and psychoeducation showed some benefits, but mainly according to clinician ratings—not necessarily from the patients themselves. Neurostimulation techniques like transcranial direct current stimulation also showed some improvements, but only in limited contexts and with small sample sizes.
Conclusion
So, what does this mean for people navigating ADHD in adulthood? Stimulant medications remain the most effective treatment for managing ADHD symptoms day-to-day but nonstimulant medication are not far behind, which is good given the problems we’ve had with stimulant shortages. This study also supports structured psychotherapy as a viable treatment option, especially when used in conjunction with medication.
The study emphasizes the importance of ongoing, long-term research and the need for treatment plans that are tailored to the individual ADHD patient– Managing adult ADHD effectively calls for flexible, patient-centered care.
-----
Struggling with side effects or not seeing improvement in your day-to-day life? Dive into a step-by-step journey that starts with the basics of screening and diagnosis, detailing the clinical criteria healthcare professionals use so you can be certain you receive an accurate evaluation. This isn’t just another ADHD guide—it’s your toolkit for getting the care you deserve. This is the kind of care that doesn’t just patch up symptoms but helps you unlock your potential and build the life you want. Whether you’ve just been diagnosed or you’ve been living with ADHD for years, this booklet is here to empower you to take control of your healthcare journey.
Proceeds from the sale of this book are used to support www.ADHDevidence.org.
EBI-ADHD:
If you live with ADHD, treat ADHD, or write about ADHD, you’ve probably run into the same problem: there’s a ton of research on treatments, but it’s scattered across hundreds of papers that don’t talk to each other. The EBI-ADHD website fixes that.
EBI-ADHD (Evidence-Based Interventions for ADHD) is a free, interactive platform that pulls together the best available research on how ADHD treatments work and how safe they are. It’s built for clinicians, people with ADHD and their families, and guideline developers who need clear, comparable information rather than a pile of PDFs. EBI-ADHD Database The site is powered by 200+ meta-analyses covering 50,000+ participants and more than 30 different interventions. These include medications, psychological therapies, brain-stimulation approaches, and lifestyle or “complementary” options.
The heart of the site is an interactive dashboard. You can:
The dashboard then shows an evidence matrix: a table where each cell is a specific treatment–outcome–time-point combination. Each cell tells you two things at a glance:
Clicking a cell opens more detail: effect sizes, the underlying meta-analysis, and how the certainty rating was decided.
EBI-ADHD is not just a curated list of papers. It’s built on a formal umbrella review of ADHD interventions, published in The BMJ in 2025. That review re-analyzed 221 meta-analyses using a standardized statistical pipeline and rating system.
The platform was co-created with 100+ clinicians and 100+ people with lived ADHD experience from around 30 countries and follows the broader U-REACH framework for turning complex evidence into accessible digital tools.
Why it Matters
ADHD is one of the most studied conditions in mental health, yet decisions in everyday practice are still often driven by habit, marketing, or selective reading of the literature. EBI-ADHD offers something different: a transparent, continuously updated map of what we actually know about ADHD treatments and how sure we are about it.
In short, it’s a tool to move conversations about ADHD care from “I heard this works” to “Here’s what the best current evidence shows, and let’s decide together what matters most for you.”
The Background:
Meta-analyses have previously suggested a link between maternal thyroid dysfunction and neurodevelopmental disorders (NDDs) in children, though some studies report no significant difference. Overweight and obesity are more common in children and adolescents with NDDs. Hypothyroidism is often associated with obesity, which may result from reduced energy expenditure or disrupted hormone signaling affecting growth and appetite. These hormone-related parameters could potentially serve as biomarkers for NDDs; however, research findings on these indicators vary.
The Study:
A Chinese research group recently released a meta-analysis examining the relationship between neurodevelopmental disorders (NDDs) and hormone levels – including thyroid, growth, and appetite hormones – in children and adolescents.
The analysis included peer-reviewed studies that compared hormone levels – such as thyroid hormones (FT3, FT4, TT3, TT4, TSH, TPO-Ab, or TG-Ab), growth hormones (IGF-1 or IGFBP-3), and appetite-related hormones (leptin, ghrelin, or adiponectin) – in children and adolescents with NDDs like ADHD, against matched healthy controls. To be included, NDD cases had to be first-diagnosis and medication-free, or have stopped medication before testing. Hormone measurements needed to come from blood, urine, or cerebrospinal fluid samples, and all studies were required to provide both means and standard deviations for these measurements.
Meta-analysis of nine studies encompassing over 5,700 participants reported a medium effect size increase in free triiodothyronine (FT3) in children and adolescents with ADHD relative to healthy controls. There was no indication of publication bias, but variation between individual study outcomes (heterogeneity) was very high. Further analysis showed FT3 was only significantly elevated in the predominantly inattentive form of ADHD (three studies), again with medium effect size, but not in the hyperactive/impulsive and combined forms.
Meta-analysis of two studies combining more than 4,800 participants found a small effect size increase in thyroid peroxidase antibody (TPO-Ab) in children and adolescents with ADHD relative to healthy controls. In this case, the two studies had consistent results. Because only two studies were involved, there was no way to evaluate publication bias.
The remaining thyroid hormone meta-analyses, involving 6 to 18 studies and over 5,000 participants in each instance, found no significant differences in levels between children and adolescents with ADHD and healthy controls.
Meta-analyses of six studies with 317 participants and two studies with 192 participants found no significant differences in growth hormone levels between children and adolescents with ADHD and healthy controls.
Finally, meta-analyses of nine studies with 333 participants, five studies with 311 participants, and three studies with 143 participants found no significant differences in appetite-related hormone levels between children and adolescents with ADHD and healthy controls.
The Conclusion:
The team concluded that FT3 and TPO-Ab might be useful biomarkers for predicting ADHD in youth. However, since FT3 was only linked to inattentive ADHD, and TPO-Ab’s evidence came from just two studies with small effects, this conclusion may overstate the meta-analysis results.
Our Take-Away:
Overall, this meta-analysis found only limited evidence that hormone differences are linked to ADHD. One thyroid hormone (FT3) was higher in children with ADHD—mainly in the inattentive presentation—but the findings varied widely across studies. Another marker, TPO-Ab, showed a small increase, but this came from only two studies, making the result less certain. For all other thyroid, growth, and appetite-related hormones, the researchers found no meaningful differences between children with ADHD and those without. While FT3 and TPO-Ab may be worth exploring in future research, the current evidence is not strong enough to consider them reliable biomarkers.
Background:
Recent progress in reproductive medicine has increased the number of children conceived via assisted reproductive techniques (ART). These include:
Although ART helps with infertility, there are concerns about its long-term effects on offspring, especially regarding neurodevelopment. Factors such as hormonal treatments, gamete manipulation, altered embryonic environments, as well as parental age and infertility, may influence brain development and raise the risk of neurodevelopmental and mental health disorders.
With previous studies finding conflicting results on a possible association between ART and increased risk of mental health disorders, an Indian research team has just published a new meta-analysis exploring this topic.
The Study:
Studies were eligible if they were observational (cohort, case-control, or cross-sectional), reported confounder-adjusted effect sizes for ADHD, and were published in English in peer-reviewed journals.
A meta-analysis of eight studies encompassing nearly twelve million individuals indicated a 7% higher prevalence of ADHD in offspring conceived via IVF/ICSI compared to those conceived naturally. The heterogeneity among studies was minimal, and no evidence of publication bias was observed.
The study’s 95% confidence interval ranged from 4% to 10%. Further analysis of five studies comprising almost nine million participants that distinguished outcomes by sex revealed that the increase in ADHD risk among female offspring was not statistically significant. In contrast, the elevated risk in male offspring persisted, though it was marginally significant, with the lower bound of the confidence limit at only 1%.
Results:
A meta-analysis of three studies (1.4 million participants) found a 13% higher rate of ADHD in children conceived via ovulation induction/intrauterine insemination (OI/IUI) compared to natural conception. The effect size, though doubled, remains small. Minimal heterogeneity and no publication bias were observed.
The team concluded, “The review found a small but statistically significant moderate certainty evidence of an increased risk of ADHD in those conceived through ART, compared to spontaneous conception. The magnitude of observed risk is small and is reassuring for parents and clinicians.”
Our Take-Away:
Overall, the meta-analysis points to a small, but measurable increase in ADHD diagnoses among children conceived through ART, but the effect sizes are modest and supported by moderate-certainty evidence. And we must always keep in mind that the researchers who wrote the original articles could not correct for all possible confounds. These findings suggest that while reproductive technologies may introduce slight variation in neurodevelopmental outcomes, the effects are small and uncertain. For families and clinicians, the results are generally reassuring: ART remains a safe and effective avenue to parenthood, and the results of this study should not be viewed as a prohibitive concern. Thoughtful developmental monitoring and open, evidence-based counseling can help ensure that ART-conceived children receive support that caters to their individual needs.
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. More Info
By clicking, you agree to store cookies on your device to enhance navigation, analyze usage, and support marketing. More Info