Cookie Preferences
By clicking, you agree to store cookies on your device to enhance navigation, analyze usage, and support marketing. More Info
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
May 15, 2025
.png)
We know that Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental condition with strong biological and genetic underpinnings; However, emerging research suggests that early environmental influences—particularly parent–child interactions—may shape how ADHD traits, such as impulsivity and delay aversion, are expressed during development.
This longitudinal study explored whether negative parental reactions during moments of delay contribute to the intensification of ADHD-related behaviors in preschool-aged children. A total of 112 mother–child pairs from the UK and Hong Kong participated. Children were screened for ADHD traits using the Strengths and Difficulties Questionnaire, ensuring a range of symptom severity.
The experimental task—the Parent–Child Delay Frustration Task (PC-DeFT)—was designed to assess how children responded to brief, unpredictable waiting periods during a game-like activity, and how parents reacted in turn. During the task, children operated a button to change a red light to green, allowing their parent to retrieve a toy item. While most trials had no delay, six included unexpected 5–10 second pauses, creating mild frustration. Trained observers recorded children’s behavioral responses and parents' emotional reactions.
At follow-up (12–18 months later), teacher ratings revealed that children whose parents showed more negative reactions during delay trials (e.g., impatience, criticism) were more likely to exhibit increases in ADHD traits—especially impulsivity and difficulty waiting. Importantly, this link was mediated by increases in delay aversion, a motivational style where the child seeks to avoid frustrating waiting experiences. No such associations were found in free play or non-delay tasks, underscoring the specificity of this interaction.
The study’s findings suggest that, while these interactions do not cause ADHD, early social environments can influence how and when symptoms manifest. Interventions aimed at supporting positive parent–child interactions—particularly in challenging contexts like waiting—may help shape the developmental trajectory of children predisposed to ADHD.
Chan WWY, Shum KK, Downs J, Sonuga-Barke EJS. Are ADHD trajectories shaped by the social environment? A longitudinal study of maternal influences on the preschool origins of delay aversion. J Child Psychol Psychiatry. 2025 Jun;66(6):892-905. doi: 10.1111/jcpp.14103. Epub 2024 Dec 22. PMID: 39710599; PMCID: PMC12062859.
A large international research team has just released a detailed analysis of studies looking at the connection between parents' mental health conditions and their children's mental health, particularly focusing on ADHD (Attention Deficit Hyperactivity Disorder). This analysis, called a meta-analysis, involved carefully examining previous studies on the subject. By September 2022, they had found 211 studies, involving more than 23 million people, that could be combined for their analysis.
Most of the studies focused on mental disorders other than ADHD. However, when they specifically looked at ADHD, they found five studies with over 6.7 million participants. These studies showed that children of parents with ADHD were more than eight times as likely to have ADHD compared to children whose parents did not have ADHD. The likelihood of this result happening by chance was extremely low, meaning the connection between parental ADHD and child ADHD is strong.
The researchers wanted to figure out how common ADHD is among children of parents both with and without ADHD. To do this, they first analyzed 65 studies with about 2.9 million participants, focusing on children whose parents did not have ADHD. They found that around 3% of these children had ADHD.
Next, they analyzed five studies with over 44,000 cases where the parents did have ADHD. In this group, they found that 32% of the children also had ADHD, meaning about one in three. This is a significant difference—children of parents with ADHD are about ten times more likely to have the condition than children whose parents who do not have ADHD.
The researchers also wanted to see if other mental health issues in parents, besides ADHD, were linked to ADHD in their children. They analyzed four studies involving 1.5 million participants and found that if a parent had any mental health disorder (like anxiety, depression, or substance use issues), the child’s chances of having ADHD increased by 80%. However, this is far less than the 840% increase seen in children whose parents specifically had ADHD. In other words, ADHD is much more likely to be passed down in families compared to other mental disorders.
The study had a lot of strengths, mainly due to the large number of participants involved, which helps make the findings more reliable. However, there were also some limitations:
Despite these limitations, the research team concluded that their analysis provides strong evidence that children of parents with ADHD or other serious mental health disorders are at a higher risk of developing mental disorders themselves. While more research is needed to fill in the gaps, the findings suggest that it would be wise to carefully monitor the mental health of children whose parents have these conditions to provide support and early intervention if needed
Raising children is not easy. I should know.
As a clinical psychologist, I've helped parents learn the skills they need to be better parents. And my experience raising three children confirmed my clinical experience.
Parenting is a tough job under the best of circumstances, but it is even harder if the parent has ADHD.
For example, an effective parent establishes rules and enforces them systematically. This requires attention to detail, self-control, and good organizational skills. Given these requirements, it is easy to see how ADHD symptoms interfere with parenting. These observations have led some of my colleagues to test the theory that treating ADHD adults with medication would improve their parenting skills. I know about two studies that tested this idea.
In 2008, Dr. Chronis-Toscano and colleagues published a study using a sustained-release form of methylphenidate for mothers with ADHD. As expected, the medication decreased their symptoms of inattention and hyperactivity/impulsivity. The medication also reduced the mother's use of inconsistent discipline and corporal punishment and improved their monitoring and supervision of their children.
In a 2014 study, Waxmonsky and colleagues observed ADHD adults and their children in a laboratory setting once when the adults were off medication and once when they were on medication. They used the same sustained-release form of amphetamine for all the patients. As expected, the medications reduced ADHD symptoms in the parents. This laboratory study is especially informative because the researchers made objective ratings of parent-child interactions, rather than relying on the parents' reports of those interactions. Twenty parents completed the study. The medication led to less negative talk and commands and more praise by parents. It also reduced negative and inappropriate behaviors in their children.
Both studies suggest that treating ADHD adults with medication will improve their parenting skills. That is good news. But they also found that not all parenting behaviors improved. That makes sense. Parenting is a skill that must be learned. Because ADHD interferes with learning, parents with the disorder need time to learn these skills. Medication can eliminate some of the worst behaviors, but doctors should also provide adjunct behavioral or cognitive-behavioral therapies that could help ADHD parents learn parenting skills and achieve their full potential as parents.
A German team of researchers performed a comprehensive search of the medical literature and identified 35randomized controlled trials (RCTs) published in English that explored this question. Participating children were between three and six years old. Children with intellectual disabilities, sensory disabilities, or specific neurological disorders such as epilepsy were excluded.
The total number of participating preschoolers was over three thousand, drawn almost exclusively from the general population, meaning these studies were not specifically evaluating effects on children with ADHD. But given that ADHD results in poorer executive functioning, evidence of the effectiveness of cognitive training would suggest it could help partially reverse such deficits.
RCTs assign participants randomly to a treatment group and a group not receiving treatment but often receiving a placebo. But RCTs themselves vary in risk of bias, depending on:
After evaluating the RCTs by these criteria, the team performed a series of meta-analyses.
Combining the 23 RCTs with over 2,000 children that measured working memory, they found that cognitive training led to robust moderate improvements. Looking only at the eleven most rigorously controlled studies strengthened the effect, with moderate-to-large gains.
Twenty-six RCTs with over 2,200 children assessed inhibitory control. When pooled, they indicated a small-to-moderate improvement from cognitive training. Including only the seven most rigorously controlled studies again strengthened the effect, boosting it into the moderate effect zone.
Twelve RCTs with over 1,500 participants tested the effects of cognitive training on flexibility. When combined, they pointed to moderate gains. Looking at only the four well-controlled studies boosted the effect to strong gains. Yet here there was evidence of publication bias, so no firm conclusion can be drawn.
Only four studies with a combined total of 119 preschoolers tested the effects on ADHD ratings. The meta-analysis found a small but non-significant improvement, very likely due to insufficient sampling. As the authors noted, "some findings of the meta-analysis are limited by the insufficient number of eligible studies. Specifically, more studies are needed which use blinded assessments of subjective ratings of ADHD ... symptoms ..."
The authors concluded that their meta-analyses revealed significant, mostly medium-sized effects of the preschool interventions on core EFs [executive functions] in studies showing the low risk of bias."
Acid-suppressive medications, including proton pump inhibitors (PPIs) and histamine-2 (H2) receptor antagonists, are often prescribed during pregnancy to treat heartburn and gastroesophageal reflux disease.
Research shows changes in the gut microbiome can negatively affect neurodevelopment. Since acid-suppressive medications alter gut microbiota, maternal use during pregnancy may impact offspring’s neurodevelopment. Because PPIs and H2 receptor antagonists readily cross the placental barrier, they could potentially influence fetal neurodevelopment.
The link between prenatal exposure to acid-suppressive medications and major neuropsychiatric disorders is not well understood. With the use of these medications during pregnancy rising, it is important to assess their impact on children's long-term neurodevelopment. This study examined whether maternal use of acid-suppressive drugs is associated with increased risk of neuropsychiatric disorders in children, using a large, nationwide birth cohort from South Korea.
South Korea operates a single-payer health insurance system, providing coverage for over 97% of its citizens. The National Health Insurance Service (NHIS) maintains a comprehensive database with sociodemographic details, medical diagnoses, procedures, prescriptions, health examinations, and vital statistics for all insured individuals.
A Korean research team analyzed data from over three million mother-child pairs (2010–2017) to assess the risks of prenatal exposure to acid-suppressing medications. They applied propensity scoring to adjust for maternal age, number of children, medical history, and outpatient visits before pregnancy, to minimize confounding factors. That narrowed the cohort to just over 800,000 pairs, with half in the exposed group.
With these adjustments, prenatal exposure to acid-suppressing medications was associated with 14% greater likelihood of being subsequently diagnosed with ADHD.
Yet, when 151,737 exposed births were compared to the same number of sibling controls, no association was found between prenatal exposure and subsequent ADHD, which suggests unaccounted familial and genetic factors influenced the preceding results.
The Take-Away:
Evidence of these medications negatively affecting pregnancies is mixed, mostly observational, and generally reassuring when these medications are used appropriately. Untreated GERD and gastritis, however, have known risks and associations with the development of various cancers. With no evidence of an association with ADHD (or for that matter any other neuropsychiatric disorder), there is no current evidence-based reason for expectant mothers to discontinue use of acid-suppressing medications.
For years, a persistent concern has shadowed the treatment of Attention-Deficit/Hyperactivity Disorder (ADHD): Does the medication eventually stop working? Patients often report that their symptoms seem to return despite consistent use, leading to "dose escalation" or "medication holidays." A new systematic review from Sam Cortese’s team published in CNS Drugs finally puts these concerns to the test by synthesizing decades of empirical research.
Before diving into the findings, you must understand two often-confused phenomena:
The review analyzed 17 studies covering over 10,000 individuals, and the results provide a much-needed reality check for the clinical community.
The researchers found preliminary evidence that acute tolerance (tachyphylaxis) can occur within a 24-hour window.
The most important finding is that tolerance does not commonly develop to the therapeutic effects of ADHD medication in the long term. In one landmark study following children for up to 10 years, only 2.7% of participants lost their response to methylphenidate without a clear external explanation. Doses, when adjusted for natural body growth, remained remarkably stable over years of treatment.
Consistent with the lack of therapeutic tolerance, the body does not become tolerant to the physical side effects of stimulants. Increases in heart rate and blood pressure typically persist for as long as the medication is taken. This underscores why clinicians must continue monitoring cardiovascular health throughout the entire duration of treatment.
If it’s Not Tolerance, What Is It?
If "tolerance" isn't real, why do some patients feel their medication is failing? The review suggests clinicians look at these alternative explanations:
Why This Matters
These results provide clinicians the confidence to tell patients that their medication is unlikely to "wear out" permanently. Rather than immediately increasing a dose when symptoms flare, the first step should be a "clinical deep dive" into the patient's lifestyle, stress levels, and adherence.
For researchers, the review highlights a major gap: most existing studies are small, dated, or of low quality. There is a dire need for robust, longitudinal studies that track both the brain's response and the patient's environment over several years.
For people with ADHD, while your body might get "used to" the initial "buzz" of a stimulant within hours, its ability to help you focus and manage your life remains remarkably durable over the years.
The Background:
Concerns remain about how ADHD and methylphenidate (MPH) use might affect children's health and growth, and especially how it may affect their adult height. While some studies suggest disrupted growth and a possible biological mechanism, the impact of ADHD prevalence and MPH use is still unclear. Children with ADHD may develop unhealthy habits – irregular eating, low physical activity, and poor sleep – that can contribute to obesity and reduced height. MPH’s appetite-suppressing effect can lead to skipped meals or overeating. Since growth hormone is mainly released during deep sleep, chronic sleep deprivation could plausibly slow growth and impair height development; however, a clear link between ADHD, MPH use, overweight, and shorter stature has never been firmly established.
The Study:
South Korea has a single payer health insurance system that covers more than 97% of its population. A Korean research team used the National Health Insurance Service database to perform a nationwide population study to explore this topic further.
The study involved 34,850 children, of whom 12,866 were diagnosed with ADHD. Of these children, 6,816 (53%) had received methylphenidate treatment, while 6,050 (47%) had not. Each patient with ADHD was precisely matched 1:1 by age, sex, and income level to a control participant without ADHD. The sex ratio was comparable in all groups.The team used Body Mass Index (BMI) as an indicator of overweight and obesity.
The Results:
The researchers found that being diagnosed with ADHD was associated with 50% greater odds of being overweight or obese as young adults, and over 70% greater odds of severe obesity (BMI > 30) compared to matched non-ADHD controls, regardless of whether or not they were medicated.
Those diagnosed with ADHD, but not on methylphenidate, had 40% greater odds of being overweight or obese, and over 55% greater odds of becoming severely obese, relative to matched non-ADHD controls.
Methylphenidate users had 60% greater odds of being overweight or obese, and over 85% greater odds of becoming severely obese, relative to matched non-ADHD controls.
There were signs of a dose-response effect. Less than a year’s exposure to methylphenidate was associated with roughly 75% greater odds of becoming severely obese, whereas exposure over a year or more raised the odds 2.3-fold, relative to matched non-ADHD controls. Using MPH increased the prevalence of overweight from 43.2% to 46.5%, with a greater prevalence among those using MPH for more than one year (50.5%).
It is important to note that most of this effect was from ADHD itself, with methylphenidate only assuming a predominant role in severe obesity among those with longer-term exposure to the medicine.
As for height, children with ADHD were no more likely to be short of stature than matched non-ADHD controls. Being prescribed methylphenidate was associated with slightly greater odds (7%) of being short of stature, but there was no dose-response relationship.
Conclusion:
The team concluded, “patients with ADHD, particularly those treated with MPH, had a higher BMI and shorter height at adulthood than individuals without ADHD. Although the observed height difference was clinically small in both sexes and age groups, the findings suggest that long-term MPH exposure may be associated with growth and body composition, highlighting the need for regular monitoring of growth.” They also point out that “Despite these findings, the clinical relevance should be interpreted with caution. In our cohort, the mean difference in height was less than 1 cm (eg, maximum −0.6 cm in females) below commonly accepted thresholds for clinical significance.” Likewise, increases in overweight/BMI were small.
One problem with interpreting the BMI/obesity results is that some of the genetic variants that cause ADHD also cause obesity. If that genetic load increases with severity of ADHD than the results from this study are confounded because those with more severe ADHD are more likely to be treated than those with less severe ADHD.
Due to these small effects along with the many study limitations noted by the authors, these results should be considered alongside the well-established benefits of methylphenidate treatment.
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. More Info
By clicking, you agree to store cookies on your device to enhance navigation, analyze usage, and support marketing. More Info