June 18, 2021

How can women best manage ADHD during pregnancy to minimize risk to their babies?

Roughly one in thirty adult women have ADHD. Research results indicate that psychostimulants (methylphenidate and amphetamines) offer the most effective course of treatment in most instances. But during pregnancy, such treatment also exposes the fetus to these drugs. Several studies have set out to determine whether such exposure is harmful.

The largest comparison was 5,571 infants exposed to amphetamines and 2,072 exposed to methylphenidate with unexposed infants. It found no increased risks for adverse outcomes due to amphetamine or methylphenidate exposures. Another study studied 3,331 infants exposed to amphetamines, 1,515 exposed to methylphenidate, and 453 to atomoxetine. Comparing these infants to unexposed infants, it found a slightly increased risk of preeclampsia, with an adjusted risk ratio of 1.29 (95% CI 1.11-1.49), but no statistically significant effect for placental abruption, small gestational age, and preterm birth. When assessing the two stimulants, amphetamine, and methylphenidate, together, it found a small increased risk of preterm birth, with an adjusted risk ratio of 1.3 (95% CI 1.10-1.55). There was a statistically significant effect for preeclampsia, placental abruption, or small gestational age. Atomoxetine use was free of any indication of increased risk.

Another study involving 1,591 infants exposed to ADHD medication (mostly methylphenidate) during pregnancy, reported increased risks associated with exposure. The adjusted odds ratio for admission to a neonatal intensive care unit was 1.5 (95% CI 1.3-1.7), and for the central nervous system, disorders were 1.9 (95% CI 1.1-3.1). There was no increased risk for congenital malformations or perinatal death.

Six studies focused on methylphenidate exposure. Two, with a combined total of 402 exposed infants, found no increased risk for malformations. Another, with 208 exposed infants, found a slightly greater risk of cardiovascular malformations, but it was not statistically significant. A fourth, with 186 exposed infants, found no increased risk of malformations but did find a higher rate of miscarriage, with an adjusted hazard ratio of 1.98(95% CI 1.23-3.20). A fifth, with 480 exposed infants, also found a higher rate of miscarriage, with an odds ratio of 2.07 (95% CI 1.51-2.84). But although the sixth, with 382 exposed infants, likewise found an increased risk of miscarriage (adjusted relative risk 1.55 with 95% CI1.03-2.06), it also found an identical risk for women with ADHD who were not on medication during their pregnancies (adjusted relative risk 1.56with 95% CI 1.11-2.20). That finding suggests that all women with ADHD have a higher risk of miscarriage, and that methylphenidate exposure is not the causal factor.

Summing up, while some studies have shown increased adverse effects among infants exposed to maternal ADHD medications, most have not. There are indications that higher rates of miscarriage are associated with maternal ADHD rather than fetal exposure to psychostimulant medications. One study did find a small increased risk of central nervous system disorders and admission to a neonatal intensive care unit. But, again, we do not know whether that was due to exposure to psychostimulant medication or associated with maternal ADHD. If there is a risk, it appears to be a small one.

The question then becomes how to balance that as yet uncertain risk against the disadvantage of discontinuing the effective psychostimulant medication. As the authors of this review conclude. It [ADHD] is associated with significant psychiatric comorbidities for women, including depression, anxiety, substance use disorders, driving safety impairment, and occupational impairment. The gold standard treatment includes behavioral therapy and stimulant medication, namely methylphenidate and amphetamine derivatives. Psychostimulant use during pregnancy continues to increase and has been associated with a small increased relative risk of a range of obstetric concerns. However, the absolute increases in risks are small, and many of the best studies to date are confounded by other medication use and medical comorbidities.

Thus, women with moderate-to-severe ADHD should not necessarily be counseled to suspend their ADHD treatment based on these findings. They advise that when functional impairment from ADHD is moderate to severe, the benefits of stimulant medications may outweigh the small known and unknown risks of medication exposure, and that "If a decision is made to take ADHD medication, women should be informed of the known risks and benefits of the medication use in pregnancy, and take the lowest therapeutic dose possible."

Allison S. Baker, Marlene P. Freeman, "Management of Attention Deficit Hyperactivity Disorder During Pregnancy," Obstetrics and Gynecology Clinics of North America, vol. 45, issue 3 (2018), 495-509.

Related posts

No items found.

What Sleep Patterns Reveal About Mental Health: A Look at New Research

Background:

Sleep is more than simple rest. When discussing sleep, we tend to focus on the quantity rather than the quality,  how many hours of sleep we get versus the quality or depth of sleep. Duration is an important part of the picture, but understanding the stages of sleep and how certain mental health disorders affect those stages is a crucial part of the discussion. 

Sleep is an active mental process where the brain goes through distinct phases of complex electrical rhythms. These phases can be broken down into non-rapid eye movement (NREM) and rapid eye movement (REM). The non-rapid eye movement phase consists of three stages of the four stages of sleep, referred to as N1, N2(light sleep), and N3(deep sleep). N4 is the REM phase, during which time vivid dreaming typically occurs. 

Two of the most important measurable brain rhythms occur during non-rapid eye movement (NREM) sleep. These electrical rhythms are referred to as slow waves and sleep spindles. Slow waves reflect deep, restorative sleep, while spindles are brief bursts of brain activity that support memory and learning.

The Study: 

A new research review has compiled data on how these sleep oscillations differ across psychiatric conditions. The findings suggest that subtle changes in nightly brain rhythms may hold important clues about a range of disorders, from ADHD to schizophrenia.

The Results:

ADHD: Higher Spindle Activity, Mixed Slow-Wave Findings

People with ADHD showed increased slow-spindle activity, meaning those brief bursts of NREM activity were more frequent or stronger than in people without ADHD. Why this happens isn’t fully understood, but it may reflect differences in how the ADHD brain organizes information during sleep. Evidence for slow-wave abnormalities was mixed, suggesting that deep sleep disruption is not a consistent hallmark of ADHD.

Autism: Inconsistent Patterns, but Some Signs of Lower Sleep Amplitude

Among individuals with autism spectrum disorder (ASD), results were less consistent. However, some studies pointed to lower “spindle chirp” (the subtle shift in spindle frequency over time) and reduced slow-wave amplitude. Lower amplitude suggests that the brain’s deep-sleep signals may be weaker or less synchronized. Researchers are still working to understand how these patterns relate to sensory processing, learning differences, or daytime behavior.

Depression: Lower Slow-Wave and Spindle Measures—Especially With Medication

People with depression tended to show reduced slow-wave activity and fewer or weaker sleep spindles, but this pattern appeared most strongly in patients taking antidepressant medications. Since antidepressants can influence sleep architecture, researchers are careful not to overinterpret the changes.  Nevertheless, these changes raise interesting questions about how both depression and its treatments shape the sleeping brain.

PTSD: Higher Spindle Frequency Tied to Symptoms

In post-traumatic stress disorder (PTSD), the trend moved in the opposite direction. Patients showed higher spindle frequency and activity, and these changes were linked to symptom severity which suggests that the brain may be “overactive” during sleep in ways that relate to hyperarousal or intrusive memories. This strengthens the idea that sleep physiology plays a role in how traumatic memories are processed.

Psychotic Disorders: The Most Consistent Sleep Signature

The clearest and most reliable findings emerged in psychotic disorders, including schizophrenia. Across multiple studies, individuals showed: Lower spindle density (fewer spindles overall), reduced spindle amplitude and duration, correlations with symptom severity, and cognitive deficits.

Lower slow-wave activity also appeared, especially in the early phases of illness. These results echo earlier research suggesting that sleep spindles, which are generated by thalamocortical circuits, might offer a window into the neural disruptions that underlie psychosis.

The Take-Away:

The review concludes with a key message: While sleep disturbances are clearly present across psychiatric conditions, the field needs larger, better-standardized, and more longitudinal studies. With more consistent methods and longer follow-ups, researchers may be able to determine whether these oscillations can serve as reliable biomarkers or future treatment targets.

For now, the take-home message is that the effects of these mental health disorders on sleep are real and measurable.

Population Study Links ADHD Medication with Reduced Criminality, Suicides, Automotive Crashes, Substance Abuse

Many studies have shown that ADHD is associated with increased risks of suicidal behavior, substance misuse, injuries, and criminality. As we often discuss in our blogs, treatments for ADHD include medication and non-medication options, such as CBT (Cognitive Behavioral Therapy). While non-drug approaches are often used for young children or mild cases of ADHD, medications – both stimulants and non-stimulants – are common for adolescents and adults. 

Global prescriptions for ADHD drugs have risen significantly in recent years, raising questions about their safety and effectiveness. Randomized controlled trials have demonstrated that medication can help reduce the core symptoms of ADHD. However, research from these trials still offers limited or inconclusive insights into wider and more significant clinical outcomes, such as suicidal behavior and substance use disorder.

An international study team conducted a nationwide population study using the Swedish national registers. Sweden has a single-payer national health insurance system, which covers nearly every resident, enabling such studies. The researchers examined all Swedish residents aged 6 to 64 who received their first ADHD diagnosis between 2007 and 2018. Analyses of criminal behavior and transport accidents focused on a subgroup aged 15 to 64, since individuals in Sweden must be at least 15 years old to be legally accountable for crimes or to drive.

The team controlled for confounding factors, including demographics (age at ADHD diagnosis, calendar year, sex, country of birth, highest education (using parental education for those under 25), psychiatric and physical diagnoses, dispensations of psychotropic drugs, and health care use (outpatient visits and hospital admissions for both psychiatric and non-psychiatric reasons).

Time-varying covariates from the previous month covered diagnoses, medication dispensations, and healthcare use. During the study, ADHD treatments licensed in Sweden included amphetamine, atomoxetine, dexamphetamine, guanfacine, lisdexamphetamine, and methylphenidate.

After accounting for covariates, individuals diagnosed with ADHD who received medication treatment showed better outcomes than those who did not. Specifically:

-Suicidal behaviors dropped by roughly 15% in both first-time and recurrent cases.

-Initial criminal activity decreased by 13%, with repeated offences falling by 25%.

-Substance abuse initiation declined by 15%, while recurring substance abuse was reduced

by 25%.

-First automotive crashes were down 12%, and subsequent crashes fell by 16%.

There was no notable reduction in first-time accidental injuries, and only a marginally significant 4% decrease in repeated injuries.

The team concluded, “Drug treatment for ADHD was associated with beneficial effects in reducing the risks of suicidal behaviours, substance misuse, transport accidents, and criminality, but not accidental injuries when considering first event rate. The risk reductions were more pronounced for recurrent events, with reduced rates for all five outcomes.”

Meta-analysis of Non-invasive Brain Stimulation Finds Limited Evidence of Efficacy

Background: 

Pharmacotherapies, such as methylphenidate, are highly effective for short-term ADHD management, but issues remain with medication tolerability and adherence. Some patients experience unwanted side effects from stimulant medications, leaving them searching for alternative ADHD treatments. Alternative treatments such as cognitive training, behavioral therapies, psychological interventions, neurofeedback, and dietary changes have, so far, shown limited success. Thus, there is a critical need for non-pharmacological options that boost neurocognitive performance and address core ADHD symptoms.

First— What Are NIBS (Non-Invasive Brain Stimulation) Techniques?

Non-invasive brain stimulation (NIBS) techniques, including transcranial direct current stimulation (tDCS), transcranial random noise stimulation (tRNS), transcranial alternating current stimulation (tACS), and repetitive transcranial magnetic stimulation (rTMS) are generating growing attention within the scientific community. 

NIBS techniques are methods that use external stimulation, such as magnets or electrical currents, to affect brain activity without any invasive procedures. In transcranial alternating current stimulation (tACS), for example, small electrodes are placed on the scalp of the patient, and a weak electrical current is administered. 

The theory behind these techniques is that when a direct current is applied between two or more electrodes placed on specific areas of the head, it makes certain neurons more or less likely to fire. This technique has been successfully used to treat conditions like depression and anxiety, and to aid recovery from stroke or brain injury. 

The Study: 

Previous meta-analyses have produced conflicting indications of efficacy. A Chinese research team consisting of sports and rehabilitative medicine professionals has just published a network meta-analysis to explore this further, through direct comparison of five critical outcome domains: inhibitory control, working memory, cognitive flexibility, inattention, hyperactivity and impulsivity.

To be included, randomized controlled trials needed to have participants diagnosed with ADHD, use sham control groups, and assess ADHD symptoms and executive functions – such as inhibitory control, working memory, cognitive flexibility, inattention, hyperactivity, and impulsivity – using standardized tests.

A total of thirty-seven studies encompassing 1,615 participants satisfied the inclusion criteria. It is worth noting, however, that the authors did not specify the number of randomized controlled trials nor the number of participants included in each arm of the network meta-analysis.

Furthermore, the team stated, “We checked for potential small study effects and publication bias by conducting comparison-adjusted funnel plots,” but did not share their findings. They also did not provide information on outcome variation (heterogeneity) among the RCTs.

Results:

Ultimately, none of the interventions produced significant improvements in ADHD symptoms, whether in inattention symptoms or hyperactivity/impulsivity symptoms.  Likewise, none of the interventions produced significant improvements in inhibitory control. Some tDCS interventions enhanced working memory and cognitive flexibility, but details about trial numbers and participants were missing. The team concluded, “none of the NIBS interventions significantly improved inhibitory control compared to sham controls. … In terms of working memory, anodal tDCS over the left DLPFC plus cathodal tDCS over the right DLPFC … and anodal tDCS over the right inferior frontal cortex (rIFC) plus cathodal tDCS over the right supraorbital area ... were associated with significant improvements compared to sham stimulation. For cognitive flexibility, only anodal tDCS over the left DLPFC plus cathodal tDCS over the right supraorbital area demonstrated a statistically significant benefit relative to sham. ... Compared to the sham controls, none of the NIBS interventions significantly improved inattention. ... Compared to the sham controls, none of the NIBS interventions significantly improved hyperactivity and impulsivity.”

How Should We Interpret These Results?

In a word, skeptically.

If one were to read just the study’s abstract, which states, “The dual-tDCS and a-tDCS may be considered among the preferred NIBS interventions for improving cognitive function in ADHD”, it might seem that the takeaway from this study is that this combination of brain stimulation techniques might be a viable treatment option for those with ADHD. Upon closer inspection, however, the results do not suggest that any of these methods significantly improve ADHD symptoms. Additionally, this study suffers from quite a few methodological flaws, so any results should be viewed critically.

October 31, 2025