November 16, 2023

How Serious is ADHD?

The US Center for Disease Control's (CDC)review of ADHD starts with the statement: "Attention-deficit/hyperactivity disorder (ADHD) is a serious public health problem affecting many children and adults" (http://www.cdc.gov/ncbddd/adhd/research.html). My colleagues and I recently reviewed the ADHD literature. That let us describe ADHD as "... a seriously impairing, often persistent neurobiological disorder of high prevalence..." (Faraone et al., 2015). The figure 1, which comes from that paper, provides an overview of the lifetime trajectory of ADHD-associated morbidity.

Especially compelling data about ADHD and injuries comes from a recent paper, in Lancet Psychiatry, which used the Danish national registers to follow a cohort of 710,120 children (Dalsgaard et al., 2015a).   Compared with children not having ADHD, those with ADHD were 30% more likely to sustain injuries than other children.  Pharmacotherapy for ADHD reduced the risk for injuries by 32% from 5 to 10 years of age. Pharmacotherapy for ADHD reduced emergency room visits by 28.2% at age 10and 45.7% at age 12.    

These results are shown in Figure 2, taken from the publication.

Especially compelling data about ADHD and injuries comes from a recent paper, in Lancet Psychiatry, which used the Danish national registers to follow a cohort of 710,120 children (Dalsgaard et al., 2015a).   Compared with children not having ADHD, those with ADHD were 30% more likely to sustain injuries than other children.  Pharmacotherapy for ADHD reduced the risk for injuries by 32% from 5 to 10 years of age. Pharmacotherapy for ADHD reduced emergency room visits by 28.2%at age 10and 45.7% at age 12.    

These results are shown in Figure2, taken from the publication.  The Figure compares the prevalence of injuries among three groups.  ADHD children treated with medication, ADHD children not treated with medication, and children without ADHD.  The Figure shows how ADHD risk for injuries occurs for all age groups. It also shows how the risk for injuries drops with treatment so that by age 12, the prevalence of injuries among treated ADHD children is the same as the prevalence of injuries for children without ADHD.

Documented examples of ADHD-associated injuries which impact day-to-day functioning include severe burns (Fritz and Butz, 2007), dental injuries (Sabuncuoglu, 2007), penetrating eye injuries (Bayar et al., 2015), the hospital treated injuries (Hurtig et al., 2013), and head injuries (DiScala et al., 1998).  In one study (DiScala et al., 1998), when compared to other children admitted to the hospital for injuries, ADHD children were more likely to sustain injuries in multiple body regions (57.1% vs 43%), sustain head injuries (53% vs 41%), and to be severely injured as measured by the Injury Severity Score (12.5% vs5.4%) and the Glasgow Coma Scale (7.5% vs 3.4%).

Injuries are a substantial cause of ADHD-associated premature death.  This assertion comes from the work of Dalsgaard et al. (2015b)based on the same Danish registry discussed above.   In this second study, ADHD was associated with an increased risk for premature death and 53% of those deaths were due to injuries.  They reported the risk for premature death in three age groups: 1-5, 6-17, and >17.  For all three age groups, they found a greater risk for death in the ADHD group. For ages 6 to 17 and greater than 17. The ADHD-associated risk for mortality remained significant after excluding individuals with antisocial or substance use disorders.

There are currently no data about the effect of ADHD treatment on ADHD-associated premature death.  We do, however, know from the data reviewed above that ADHD treatment reduces injuries and that half the deaths in the ADHD group were due to injuries.  From this, we infer that ADHD treatments could reduce the risk of ADHD-associated premature death.

Two other ADHD-associated mobilities, obesity and cigarette smoking, have clear medical consequences.  In a meta-analysis of 42 cross-sectional studies comprising 48,161 people with ADHD and 679,975 controls, my colleagues and I reported that the pooled prevalence of obesity was increased by about 40% in ADHD children compared with non-ADHD children and by about 70% in ADHD adults compared with non-ADHD adults(Cortese et al.,2015). The association between ADHD and obesity was significant for ADHD medication-naïve subjects but not for those medicated for ADHD, which suggests that medication reduces the risk for obesity.  

Likewise, a meta-analysis of 27 longitudinal studies assessed the risk for several addictive disorders with sample sizes ranging from 4142 to 4175 for ADHD and 6835 to 6880 for non-ADHD controls (Lee et al., 2011).  Children with ADHD were at higher risk for disorders of abuse or dependence on nicotine, alcohol, marijuana, cocaine, and other unspecified substances.  Another meta-analysis (42 studies totaling, 2360 participants) showed that medications for ADHD reduced the ADHD-associated risk for smoking (Schoenfelder et al., 2014).   The authors concluded that, for ADHD patients, "Consistent stimulant treatment for ADHD may reduce the risk of smoking". This finding is especially notable given that, for ADHD youth, cigarette smoking is a gateway drug to more serious addictions (Biederman et al., 2006).

 Yes, ADHD is a serious disorder.  Although most ADHD people will be spared the worst of these outcomes, they must be considered by parents and patients when weighing the pros and cons of treatment options.

Bayar, H., Coskun, E., Oner, V., Gokcen,C., Aksoy, U., Okumus, S. & Erbagci, I. (2015). Association between penetrating eye injuries and attention deficit hyperactivity disorder in children.Br J Ophthalmol99, 1109-11.
Biederman, J., Monuteaux, M., Mick, E., Wilens, T., Fontanella, J.,Poetzl, K. M., Kirk, T., Masse, J. & Faraone, S. V.
(2006). Is cigarette smoking a gateway drug to subsequent alcohol and illicit drug use disorders? A controlled study of youths with and without ADHD. Biol Psychiatry59, 258-64.
Cortese, S., Moreira-Maia, C. R., St Fleur, D., Morcillo-Penalver, C.,Rohde, L. A. & Faraone, S. V.
(2015). Association Between ADHD and Obesity: A Systematic Review and Meta-Analysis. Am J Psychiatry, appiajp201515020266.
Dalsgaard, S., Leckman, J. F., Mortensen, P. B., Nielsen, H. S. &Simonsen, M.
(2015a). Effect of drugs on the risk of injuries in children with attention deficit hyperactivity disorder: a prospective cohort study. Lancet Psychiatry2, 702-9.
Dalsgaard, S., Ostergaard, S. D., Leckman, J. F., Mortensen, P. B.& Pedersen, M. G.
(2015b). Mortality in children, adolescents, and adults with attention deficit hyperactivity disorder: a nationwide cohortstudy. Lancet385, 2190-6.
DiScala, C., Lescohier, I., Barthel, M. & Li, G.
(1998).Injuries to children with attention deficit hyperactivity disorder. Pediatrics102, 1415-21.
Faraone, S. V., Asherson, P., Banaschewski, T., Biederman, J.,Buitelaar, J. K., Ramos-Quiroga, J. A., Rohde, L. A., Sonuga-Barke, E. J. S.,Tannock, R. & Franke, B.
(2015). Attention deficit hyperactivitydisorder. In Nature Reviews: DiseasePrimers.
Fritz, K. M. & Butz, C.
(2007). Attention Deficit/Hyperactivity Disorder and pediatric burn injury: important considerations regarding premorbid risk. Curr Opin Pediatr19, 565-9.
Hurtig, T., Ebeling, H., Jokelainen, J., Koivumaa-Honkanen, H. &Taanila, A.
(2013). The Association Between Hospital-Treated Injuries and ADHD Symptoms in Childhood and Adolescence: A Follow-Up Study in the Northern Finland Birth Cohort 1986. J Atten Disord.
Lee, S. S., Humphreys, K. L., Flory, K., Liu, R. & Glass, K.
(2011).Prospective association of childhood attention-deficit/hyperactivity disorder(ADHD) and substance use and abuse/dependence: a meta-analytic review. Clin Psychol Rev31, 328-41.
Sabuncuoglu, O.
(2007). Traumatic dental injuries and attention-deficit/hyperactivity disorder: is there a link? Dent Traumatol23,137-42.
Schoenfelder, E. N., Faraone, S. V. & Kollins, S. H.
(2014).Stimulant treatment of ADHD and cigarette smoking: a meta-analysis. Pediatrics133, 1070-1080.

Related posts

No items found.

Evidence-Based Interventions for ADHD

EBI-ADHD: 

If you live with ADHD, treat ADHD, or write about ADHD, you’ve probably run into the same problem: there’s a ton of research on treatments, but it’s scattered across hundreds of papers that don’t talk to each other.  The EBI-ADHD website fixes that. 

EBI-ADHD (Evidence-Based Interventions for ADHD) is a free, interactive platform that pulls together the best available research on how ADHD treatments work and how safe they are. It’s built for clinicians, people with ADHD and their families, and guideline developers who need clear, comparable information rather than a pile of PDFs. EBI-ADHD Database  The site is powered by 200+ meta-analyses covering 50,000+ participants and more than 30 different interventions.  These include medications, psychological therapies, brain-stimulation approaches, and lifestyle or “complementary” options. 

The heart of the site is an interactive dashboard.  You can: 

  1. Choose an age group: children (6–17), adolescents (13–17), or adults (18+). 
  1. Choose a time frame: results at 12, 26, or 52 weeks. 
  1. Choose whether to explore by intervention (e.g., methylphenidate, CBT, mindfulness, diet, neurofeedback) or by outcome (e.g., ADHD symptoms, functioning, adverse events), depending on what’s available. EBI-ADHD Database 

The dashboard then shows an evidence matrix: a table where each cell is a specific treatment–outcome–time-point combination. Each cell tells you two things at a glance: 

  1. How big the effect is, compared to placebo or another control (large benefit, small benefit, no effect, small negative impact, large negative impact). 
  1. How confident we can be in that result (high, moderate, low, or very low certainty).  

Clicking a cell opens more detail: effect sizes, the underlying meta-analysis, and how the certainty rating was decided. 

EBI-ADHD is not just a curated list of papers. It’s built on a formal umbrella review of ADHD interventions, published in The BMJ in 2025. That review re-analyzed 221 meta-analyses using a standardized statistical pipeline and rating system. 

The platform was co-created with 100+ clinicians and 100+ people with lived ADHD experience from around 30 countries and follows the broader U-REACH framework for turning complex evidence into accessible digital tools.  

Why it Matters 

ADHD is one of the most studied conditions in mental health, yet decisions in everyday practice are still often driven by habit, marketing, or selective reading of the literature. EBI-ADHD offers something different: a transparent, continuously updated map of what we actually know about ADHD treatments and how sure we are about it. 

In short, it’s a tool to move conversations about ADHD care from “I heard this works” to “Here’s what the best current evidence shows, and let’s decide together what matters most for you.” 

Meta-analysis Finds Tenuous Links Between ADHD and Thyroid Hormone Dysregulation

The Background:

Meta-analyses have previously suggested a link between maternal thyroid dysfunction and neurodevelopmental disorders (NDDs) in children, though some studies report no significant difference. Overweight and obesity are more common in children and adolescents with NDDs. Hypothyroidism is often associated with obesity, which may result from reduced energy expenditure or disrupted hormone signaling affecting growth and appetite. These hormone-related parameters could potentially serve as biomarkers for NDDs; however, research findings on these indicators vary. 

The Study:

A Chinese research group recently released a meta-analysis examining the relationship between neurodevelopmental disorders (NDDs) and hormone levels – including thyroid, growth, and appetite hormones – in children and adolescents.  

The analysis included peer-reviewed studies that compared hormone levels – such as thyroid hormones (FT3, FT4, TT3, TT4, TSH, TPO-Ab, or TG-Ab), growth hormones (IGF-1 or IGFBP-3), and appetite-related hormones (leptin, ghrelin, or adiponectin) – in children and adolescents with NDDs like ADHD, against matched healthy controls. To be included, NDD cases had to be first-diagnosis and medication-free, or have stopped medication before testing. Hormone measurements needed to come from blood, urine, or cerebrospinal fluid samples, and all studies were required to provide both means and standard deviations for these measurements. 

Meta-analysis of nine studies encompassing over 5,700 participants reported a medium effect size increase in free triiodothyronine (FT3) in children and adolescents with ADHD relative to healthy controls. There was no indication of publication bias, but variation between individual study outcomes (heterogeneity) was very high. Further analysis showed FT3 was only significantly elevated in the predominantly inattentive form of ADHD (three studies), again with medium effect size, but not in the hyperactive/impulsive and combined forms

Meta-analysis of two studies combining more than 4,800 participants found a small effect size increase in thyroid peroxidase antibody (TPO-Ab) in children and adolescents with ADHD relative to healthy controls. In this case, the two studies had consistent results. Because only two studies were involved, there was no way to evaluate publication bias. 

The remaining thyroid hormone meta-analyses, involving 6 to 18 studies and over 5,000 participants in each instance, found no significant differences in levels between children and adolescents with ADHD and healthy controls

Meta-analyses of six studies with 317 participants and two studies with 192 participants found no significant differences in growth hormone levels between children and adolescents with ADHD and healthy controls. 

Finally, meta-analyses of nine studies with 333 participants, five studies with 311 participants, and three studies with 143 participants found no significant differences in appetite-related hormone levels between children and adolescents with ADHD and healthy controls. 

The Conclusion:

The team concluded that FT3 and TPO-Ab might be useful biomarkers for predicting ADHD in youth. However, since FT3 was only linked to inattentive ADHD, and TPO-Ab’s evidence came from just two studies with small effects, this conclusion may overstate the meta-analysis results. 

Our Take-Away:

Overall, this meta-analysis found only limited evidence that hormone differences are linked to ADHD. One thyroid hormone (FT3) was higher in children with ADHD—mainly in the inattentive presentation—but the findings varied widely across studies. Another marker, TPO-Ab, showed a small increase, but this came from only two studies, making the result less certain. For all other thyroid, growth, and appetite-related hormones, the researchers found no meaningful differences between children with ADHD and those without. While FT3 and TPO-Ab may be worth exploring in future research, the current evidence is not strong enough to consider them reliable biomarkers.

 

December 15, 2025

Meta-analysis Finds Assisted Reproductive Techniques Associated with Offspring ADHD

Meta-analysis Finds Assisted Reproductive Techniques Associated with Offspring ADHD 

Background:

Recent progress in reproductive medicine has increased the number of children conceived via assisted reproductive techniques (ART). These include: 

  • In vitro fertilization (IVF), in which eggs are retrieved from the ovaries and fertilized with sperm in a laboratory; embryos are then transferred into the uterus.  
  • Intracytoplasmic sperm injection (ICSI), where a single sperm is injected directly into an egg. 
  • Intrauterine insemination (IUI), in which sperm is placed directly into the uterus around the time of ovulation. This is often combined with ovulation-inducing (OI) medications. 

Although ART helps with infertility, there are concerns about its long-term effects on offspring, especially regarding neurodevelopment. Factors such as hormonal treatments, gamete manipulation, altered embryonic environments, as well as parental age and infertility, may influence brain development and raise the risk of neurodevelopmental and mental health disorders. 

With previous studies finding conflicting results on a possible association between ART and increased risk of mental health disorders, an Indian research team has just published a new meta-analysis exploring this topic. 

The Study:

Studies were eligible if they were observational (cohort, case-control, or cross-sectional), reported confounder-adjusted effect sizes for ADHD, and were published in English in peer-reviewed journals. 

A meta-analysis of eight studies encompassing nearly twelve million individuals indicated a 7% higher prevalence of ADHD in offspring conceived via IVF/ICSI compared to those conceived naturally. The heterogeneity among studies was minimal, and no evidence of publication bias was observed. 

The study’s 95% confidence interval ranged from 4% to 10%. Further analysis of five studies comprising almost nine million participants that distinguished outcomes by sex revealed that the increase in ADHD risk among female offspring was not statistically significant. In contrast, the elevated risk in male offspring persisted, though it was marginally significant, with the lower bound of the confidence limit at only 1%. 

Results:

A meta-analysis of three studies (1.4 million participants) found a 13% higher rate of ADHD in children conceived via ovulation induction/intrauterine insemination (OI/IUI) compared to natural conception. The effect size, though doubled, remains small. Minimal heterogeneity and no publication bias were observed. 

The team concluded, “The review found a small but statistically significant moderate certainty evidence of an increased risk of ADHD in those conceived through ART, compared to spontaneous conception. The magnitude of observed risk is small and is reassuring for parents and clinicians.” 

Our Take-Away:

Overall, the meta-analysis points to a small, but measurable increase in ADHD diagnoses among children conceived through ART, but the effect sizes are modest and supported by moderate-certainty evidence. And we must always keep in mind that the researchers who wrote the original articles could not correct for all possible confounds.  These findings suggest that while reproductive technologies may introduce slight variation in neurodevelopmental outcomes, the effects are small and uncertain. For families and clinicians, the results are generally reassuring: ART remains a safe and effective avenue to parenthood, and the results of this study should not be viewed as a prohibitive concern. Thoughtful developmental monitoring and open, evidence-based counseling can help ensure that ART-conceived children receive support that caters to their individual needs.

 

December 12, 2025