May 15, 2021

Myths About The Treatment of ADHD

Myth:  ADHD medications "anesthetize" ADHD children.
 
The idea here is that the drug treatment of ADHD is no more than a chemical straightjacket intended to control a child's behavior to be less bothersome to parents and teachers. After all, everyone knows that if you shoot up a person with tranquilizers, they will calm down.

Fact:  ADHD medications are neither anesthetics nor tranquilizers.

The truth of the matter is that most ADHD medications are stimulants. They don't anesthetize the brain; they stimulate it. By speeding up the transmission of dopamine signals in the brain, ADHD medications improve brain functioning, which in turn leads to an increased ability to pay attention and control behavior.  The non-stimulant medications improve signaling by norepinephrine. They also improve the brain's ability to process signals. They are not sedatives or anesthetics. When taking their medication, ADHD patients can focus and control their behavior to be more effective in school, work, and relationships.  They are not "drugged" into submission.

Myth: ADHD medications cause drug and alcohol abuse
We know from many long-term studies of ADHD children that when they reach adolescence and adulthood, they are at high risk for alcohol and drug use disorders. Because of this fact, some media reports have implied that their drug use was caused by treatment of their ADHD with stimulant medications.

Fact: ADHD medications do not cause drug and alcohol abuse
Some ADHD medications indeed use the same chemicals that are found in street drugs, such as amphetamine.  But there is a very big difference between these medications and street drugs. When street drugs are injected or snorted, they can lead to addiction, but when they are taken in pill form as prescribed by a doctor, they do not cause addiction. When my colleagues and I examined the world literature on this topic, we found that rather than causing drug and alcohol abuse, stimulant medicine protected ADHD children from these problems later in life. One study from researchers at Harvard University and the Massachusetts General Hospital found that the drug treatment of ADHD reduced the risk for illicit drug use by84 a percent. These findings make intuitive sense. These medicines reduce the symptoms of the disorder that lead to illicit drug use. For example, an impulsive ADHD teenager who acts without thinking is much more likely to use drugs than an ADHD teen whose symptoms are controlled by medical drug treatment. After we published our study, other work appeared. Some of these studies did not agree that ADHD medications protected ADHD people from drug abuse, but they did not find that they caused drug abuse.

Myth:  Psychological or behavioral therapies should be tried before medication.  
Many people are cautious about taking medications, and that caution is even stronger when parents consider treatment options for their children.  Because medications can have side effects, shouldn't people with ADHD try to talk therapy before taking medicine?

Fact:  Treatment guidelines suggest that medication is the first-line treatment.
The problem with trying talk or behavior therapy before medication is that medication works much better.  For ADHD adults, one type of talk therapy(cognitive behavioral therapy) is recommended, but only when the patient is also taking medication.  The multimodal treatment of ADHD (MTA) study examined this issue in ADHD children from several academic medical centers in the United States. That study found that treating ADHD with medication was better than treating it with behavior therapy. Importantly, behavior therapy plus medication was no more effective than medication alone. That is why treatment guidelines from the American Academy of Pediatrics and the American Academy of Children and Adolescents recommend medicine as a first-line treatment for ADHD, except for preschool children. ADHD medications indeed have side effects, but these are usually mild and typically do not interfere with treatment.  And don't forget about the risks that a patient faces when they do not use medications for ADHD.  These untreated patients are at risk for worsening ADHD symptoms and complications.

Myth: Brain abnormalities of ADHD patients are caused by psychiatric medications
A large scientific literature shows that ADHD people have subtle problems with the structure and function of their brains.  Scientists believe that these problems are the cause of ADHD symptoms. Critics of ADHD claim that these brain problems are caused by the medications used to treat ADHD.  Who is right?

Fact: Brain abnormalities are found in never medicated ADHD patients.
Alan Zametkin, a scientist at the US National Institute of Mental Health, was the first to show brain abnormalities in ADHD patients who had never been treated for their ADHD.  He found that some parts of the brains of ADHD patients were underactive. His findings could not be due to medication because the patients had never been medicated. Since his study, many other researchers have used neuroimaging to examine the brains of ADHD patients. This work confirmed Dr. Zametkin’s observation of abnormal brain findings in unmediated patients. Reviews of the brain imaging literature have concluded that the brain abnormalities seen in ADHD cannot be attributed to ADHD medications.

Wilens, T., Faraone, S. V.,Biederman, J. &Gunawardene, S. (2003). Does Stimulant Therapy of Attention-Deficit hyperactivity disorder Beget Later Substance Abuse?  Aneta-Analytic Review of the Literature.Pediatrics111, 179-185.
Humphreys, K. L., Eng, T. &Lee, S. S.
(2013).Stimulant Medication and Substance Use Outcomes: A Meta-analysis. JAMA psychiatry, 1-9.
Chang, Z., Lichtenstein, P., Halldner,L., D'Onofrio, B., Serlachius, E., Fazel, S., Langstrom, N. & Larsson, H.
(2014). Stimulant ADHD medication and risk for substance abuse. J Child Psychol Psychiatry55,878-85.
Nakao, T., Radua, J., Rubia, K. &Mataix-Cols, D.
(2011 ). Gray matter volume abnormalities in ADHD: voxel-based meta-analysis exploring the effects of age and stimulant medication. Am J Psychiatry168, 1154-63.
Rubia, K., Alegria, A. A., Cubillo, A. I., Smith, A. B., Brammer, M.J. &Radua, J.
(2014). Effects of stimulants on brain function inattention-deficit/hyperactivity disorder: a systematic review and meta-analysis. Biol Psychiatry76, 616-28.
Spencer, T. J., Brown, A., Seidman, L. J., Valera, E. M., Makris, N., Lomedico, A., Faraone, S. V. &Biederman,J.
(2013).Effect of psychostimulants on brain structure and function in ADHD: a qualitative literature review of magnetic resonance imaging-based neuroimaging studies. J Clin Psychiatry74, 902-17.

Related posts

No items found.

Evidence-Based Interventions for ADHD

EBI-ADHD: 

If you live with ADHD, treat ADHD, or write about ADHD, you’ve probably run into the same problem: there’s a ton of research on treatments, but it’s scattered across hundreds of papers that don’t talk to each other.  The EBI-ADHD website fixes that. 

EBI-ADHD (Evidence-Based Interventions for ADHD) is a free, interactive platform that pulls together the best available research on how ADHD treatments work and how safe they are. It’s built for clinicians, people with ADHD and their families, and guideline developers who need clear, comparable information rather than a pile of PDFs. EBI-ADHD Database  The site is powered by 200+ meta-analyses covering 50,000+ participants and more than 30 different interventions.  These include medications, psychological therapies, brain-stimulation approaches, and lifestyle or “complementary” options. 

The heart of the site is an interactive dashboard.  You can: 

  1. Choose an age group: children (6–17), adolescents (13–17), or adults (18+). 
  1. Choose a time frame: results at 12, 26, or 52 weeks. 
  1. Choose whether to explore by intervention (e.g., methylphenidate, CBT, mindfulness, diet, neurofeedback) or by outcome (e.g., ADHD symptoms, functioning, adverse events), depending on what’s available. EBI-ADHD Database 

The dashboard then shows an evidence matrix: a table where each cell is a specific treatment–outcome–time-point combination. Each cell tells you two things at a glance: 

  1. How big the effect is, compared to placebo or another control (large benefit, small benefit, no effect, small negative impact, large negative impact). 
  1. How confident we can be in that result (high, moderate, low, or very low certainty).  

Clicking a cell opens more detail: effect sizes, the underlying meta-analysis, and how the certainty rating was decided. 

EBI-ADHD is not just a curated list of papers. It’s built on a formal umbrella review of ADHD interventions, published in The BMJ in 2025. That review re-analyzed 221 meta-analyses using a standardized statistical pipeline and rating system. 

The platform was co-created with 100+ clinicians and 100+ people with lived ADHD experience from around 30 countries and follows the broader U-REACH framework for turning complex evidence into accessible digital tools.  

Why it Matters 

ADHD is one of the most studied conditions in mental health, yet decisions in everyday practice are still often driven by habit, marketing, or selective reading of the literature. EBI-ADHD offers something different: a transparent, continuously updated map of what we actually know about ADHD treatments and how sure we are about it. 

In short, it’s a tool to move conversations about ADHD care from “I heard this works” to “Here’s what the best current evidence shows, and let’s decide together what matters most for you.” 

Meta-analysis Finds Tenuous Links Between ADHD and Thyroid Hormone Dysregulation

The Background:

Meta-analyses have previously suggested a link between maternal thyroid dysfunction and neurodevelopmental disorders (NDDs) in children, though some studies report no significant difference. Overweight and obesity are more common in children and adolescents with NDDs. Hypothyroidism is often associated with obesity, which may result from reduced energy expenditure or disrupted hormone signaling affecting growth and appetite. These hormone-related parameters could potentially serve as biomarkers for NDDs; however, research findings on these indicators vary. 

The Study:

A Chinese research group recently released a meta-analysis examining the relationship between neurodevelopmental disorders (NDDs) and hormone levels – including thyroid, growth, and appetite hormones – in children and adolescents.  

The analysis included peer-reviewed studies that compared hormone levels – such as thyroid hormones (FT3, FT4, TT3, TT4, TSH, TPO-Ab, or TG-Ab), growth hormones (IGF-1 or IGFBP-3), and appetite-related hormones (leptin, ghrelin, or adiponectin) – in children and adolescents with NDDs like ADHD, against matched healthy controls. To be included, NDD cases had to be first-diagnosis and medication-free, or have stopped medication before testing. Hormone measurements needed to come from blood, urine, or cerebrospinal fluid samples, and all studies were required to provide both means and standard deviations for these measurements. 

Meta-analysis of nine studies encompassing over 5,700 participants reported a medium effect size increase in free triiodothyronine (FT3) in children and adolescents with ADHD relative to healthy controls. There was no indication of publication bias, but variation between individual study outcomes (heterogeneity) was very high. Further analysis showed FT3 was only significantly elevated in the predominantly inattentive form of ADHD (three studies), again with medium effect size, but not in the hyperactive/impulsive and combined forms

Meta-analysis of two studies combining more than 4,800 participants found a small effect size increase in thyroid peroxidase antibody (TPO-Ab) in children and adolescents with ADHD relative to healthy controls. In this case, the two studies had consistent results. Because only two studies were involved, there was no way to evaluate publication bias. 

The remaining thyroid hormone meta-analyses, involving 6 to 18 studies and over 5,000 participants in each instance, found no significant differences in levels between children and adolescents with ADHD and healthy controls

Meta-analyses of six studies with 317 participants and two studies with 192 participants found no significant differences in growth hormone levels between children and adolescents with ADHD and healthy controls. 

Finally, meta-analyses of nine studies with 333 participants, five studies with 311 participants, and three studies with 143 participants found no significant differences in appetite-related hormone levels between children and adolescents with ADHD and healthy controls. 

The Conclusion:

The team concluded that FT3 and TPO-Ab might be useful biomarkers for predicting ADHD in youth. However, since FT3 was only linked to inattentive ADHD, and TPO-Ab’s evidence came from just two studies with small effects, this conclusion may overstate the meta-analysis results. 

Our Take-Away:

Overall, this meta-analysis found only limited evidence that hormone differences are linked to ADHD. One thyroid hormone (FT3) was higher in children with ADHD—mainly in the inattentive presentation—but the findings varied widely across studies. Another marker, TPO-Ab, showed a small increase, but this came from only two studies, making the result less certain. For all other thyroid, growth, and appetite-related hormones, the researchers found no meaningful differences between children with ADHD and those without. While FT3 and TPO-Ab may be worth exploring in future research, the current evidence is not strong enough to consider them reliable biomarkers.

 

December 15, 2025

Meta-analysis Finds Assisted Reproductive Techniques Associated with Offspring ADHD

Meta-analysis Finds Assisted Reproductive Techniques Associated with Offspring ADHD 

Background:

Recent progress in reproductive medicine has increased the number of children conceived via assisted reproductive techniques (ART). These include: 

  • In vitro fertilization (IVF), in which eggs are retrieved from the ovaries and fertilized with sperm in a laboratory; embryos are then transferred into the uterus.  
  • Intracytoplasmic sperm injection (ICSI), where a single sperm is injected directly into an egg. 
  • Intrauterine insemination (IUI), in which sperm is placed directly into the uterus around the time of ovulation. This is often combined with ovulation-inducing (OI) medications. 

Although ART helps with infertility, there are concerns about its long-term effects on offspring, especially regarding neurodevelopment. Factors such as hormonal treatments, gamete manipulation, altered embryonic environments, as well as parental age and infertility, may influence brain development and raise the risk of neurodevelopmental and mental health disorders. 

With previous studies finding conflicting results on a possible association between ART and increased risk of mental health disorders, an Indian research team has just published a new meta-analysis exploring this topic. 

The Study:

Studies were eligible if they were observational (cohort, case-control, or cross-sectional), reported confounder-adjusted effect sizes for ADHD, and were published in English in peer-reviewed journals. 

A meta-analysis of eight studies encompassing nearly twelve million individuals indicated a 7% higher prevalence of ADHD in offspring conceived via IVF/ICSI compared to those conceived naturally. The heterogeneity among studies was minimal, and no evidence of publication bias was observed. 

The study’s 95% confidence interval ranged from 4% to 10%. Further analysis of five studies comprising almost nine million participants that distinguished outcomes by sex revealed that the increase in ADHD risk among female offspring was not statistically significant. In contrast, the elevated risk in male offspring persisted, though it was marginally significant, with the lower bound of the confidence limit at only 1%. 

Results:

A meta-analysis of three studies (1.4 million participants) found a 13% higher rate of ADHD in children conceived via ovulation induction/intrauterine insemination (OI/IUI) compared to natural conception. The effect size, though doubled, remains small. Minimal heterogeneity and no publication bias were observed. 

The team concluded, “The review found a small but statistically significant moderate certainty evidence of an increased risk of ADHD in those conceived through ART, compared to spontaneous conception. The magnitude of observed risk is small and is reassuring for parents and clinicians.” 

Our Take-Away:

Overall, the meta-analysis points to a small, but measurable increase in ADHD diagnoses among children conceived through ART, but the effect sizes are modest and supported by moderate-certainty evidence. And we must always keep in mind that the researchers who wrote the original articles could not correct for all possible confounds.  These findings suggest that while reproductive technologies may introduce slight variation in neurodevelopmental outcomes, the effects are small and uncertain. For families and clinicians, the results are generally reassuring: ART remains a safe and effective avenue to parenthood, and the results of this study should not be viewed as a prohibitive concern. Thoughtful developmental monitoring and open, evidence-based counseling can help ensure that ART-conceived children receive support that caters to their individual needs.

 

December 12, 2025