May 19, 2021

OTHER MYTHS ABOUT ADHD

Myth: ADHD is an American disorder.
Those who claim ADHD is an American disorder believe that ADHD is due to the pressures of living in a fast-paced, competitive American society.   Some argue that if we lived in a simpler world, ADHD would not exist.  

Fact:  ADHD occurs throughout the world.

Wherever scientists have searched for ADHD, they have found it.  They have done this by going to different countries, and speaking to people in the community to diagnose them with or without ADHD.   These studies show that ADHD occurs throughout the world and that the percentage of people having ADHD does not differ between the United States and the rest of the world.   Examples of where ADHD has been found include  Australia, Brazil, Canada, China, Colombia, Finland, Germany, Iceland, Israel, Italy, Japan, New Zealand, Spain, Sweden, Taiwan, The Netherlands, and Ukraine.   ADHD is not an American disorder.

Myth: A child who sits still to watch TV or play video games cannot have ADHD.
Many parents are puzzled that their child can sit still to watch TV or play video games for hours, but that same child cannot sit still for dinner or stay at their desk for long to do homework.  Are these children faking ADHD symptoms to get out of homework?

Fact:  ADHD does not necessarily interfere with playing video games or watching TV.

Because children cannot turn their ADHD on and off to suit their needs, it does seem odd that a child who is typically hyperactive and inattentive can sit for hours playing a video game.  But this ability of ADHD children fits in very well with scientific facts about ADHD. First, you probably understand the effects of rewards and punishment on behavior.  If your behavior is rewarded, you are likely to do it again.  If it is punished, you will avoid that behavior in the future.  Rewards that have the strongest effect on our behavior are large and will occur soon. For example, consider these two choices:
a)      if you listen to a boring one-hour lecture, I will pay you $100 immediately after the lecture
b)      if you listen to a boring one-hour lecture, I will pay you $110 one year after the lecture
Choice (a) is more appealing than choice (b).  Most people will not think it is worthwhile to wait one year for $10.  We say they have 'discounted' the $10 to $0.
Now consider the choices:
c)      if you listen to a boring one-hour lecture, I will pay you $100 immediately after the lecture
d)     if you listen to a boring one-hour lecture, I will pay you $2,000 one year after the lecture

Choice (d) is more appealing than choice (c).  Most people will wait one year for$2,000.   It is obvious here is that if I want the best chance of having you watch a lecture, I should offer you a large sum of money immediately after the lecture. What is not so obvious is that people vary a great deal in the degree to which they are affected by rewards that are either small or distant in the future.   For some people, getting $2,000in one year is almost like getting nothing at all.  We say that such people are not sensitive to distant rewards.

What does this have to do with ADHD and video games?  Well, people with ADHD are usually not very sensitive to weak or distant rewards.  To affect the behavior of a person with ADHD, the reward needs to be immediate and fairly large.  When a child with ADHD sits down to do homework, the potential reward is getting a good grade on their report card, but they won't receive that grade for weeks or months, so it is very distant.  Thus, it is not surprising that the possibility of that reward cannot control the child's behavior.  In contrast, video games are created so that players are rewarded very frequently by winning points or completing one of the many levels one must pass to finally complete the game.  Because playing well is also rewarded by friends, the video game rewards are strong and immediate, which makes it easy for people with ADHD to sit still and play for long periods.

 Myth: ADHD disappears in adulthood.
Until the 1990s, it was commonly believed that children grew out of ADHD.  The reason for this is not clear.  Some theories about ADHD suggested that ADHD children had a lag in brain development, and that they would make up for that lag during adolescence.  So ADHD was seen as a delay in brain development that could be overcome.   The idea that children routinely recovered from ADHD was so strong that many insurance companies would not pay for the ADHD treatment of adults.

Fact: In the majority of cases, ADHD persists into adulthood.
This myth about ADHD has been proven wrong by studies that diagnosed ADHD in children and then examined it many years later than in adults.  These studies showed that, although there was some recovery from ADHD, about two-thirds of cases persisted into adulthood. The studies also taught us that ADHD symptoms tend to change with age.  The extreme and disruptive hyperactivity of many ADHD children gets somewhat better by adulthood, as do some symptoms of impulsivity.   In contrast, inattentive symptoms do not decrease much with age.

 Myth: People with ADHD cannot do well in school or succeed in life.
This myth is based on several facts: 1) ADHD affects many aspects of life; 2) ADHD impairs thinking and behavior and 3) for most people, ADHD is a lifelong disorder.   Altogether, doesn't this mean that people with ADHD won't succeed in life?

Fact: People with ADHD can succeed and live productive lives.
There are two reasons why people with ADHD can succeed in life. The first is obvious.  Although treatments for ADHD are not perfect, they can eliminate many of the obstacles that would otherwise make it difficult for ADHD patients to do well in school or on the job.  But, more importantly, having ADHD is only one of many facts about a person's life.   Some ADHD people have other skills or traits that help them compensate for their ADHD.  For example, if you have a high level of intelligence, an engaging personality, or excellent athletic skills, you can do well despite having ADHD.   Consider Michael Phelps, who broke so many Olympic swimming records. He was diagnosed with ADHD at age 9 and took Ritalin to help his hyperactivity.   James Carville has ADHD, but he completed law school and helped Bill Clinton become President of the United States.  Cammi Granato's ADHD did not stop her from becoming captain of the United  States Olympic ice hockey team, and Ty Pennington's ADHD did not stop him from becoming a  star on TV.

 Myth: ADHD does not affect highly intelligent people
The mistake behind this myth is that it assumes that being very intelligent protects people from having ADHD.  It's true that if you are highly intelligent, you can use that intelligence to compensate for some ADHD' effects, but does high intelligence completely protect a person from ADHD?

Fact: People with ADHD can succeed and live productive lives.
When my colleagues and I studied this question, we found clear evidence that high intelligence does not completely protect people from ADHD. Like people who don't have ADHD, having high intelligence will help Alderpeople do better than ADHD people who are not smart.  But when we compared highly intelligent Alderpeople with highly intelligent non-ADHD people, we found that the highly intelligent ADHD people had many of the impairing problems that are known to be associated with ADHD.  For details about these problems, see Complications of ADHD.  In another study, we compared ADHD adults who had received straight A grades in high school, with non-ADHD people who had achieved the same grades.  Despite their good grades, these ADHD adults were not doing as well in their jobs and not earning as much income as the non-ADHD adults.  And ADHD also has an impact at every level of education.  As you can see from the figure, even for people with college degrees, having ADHD lowers your chances of being employed.

Faraone, S. V., Sergeant, J.,Gillberg, C. &Biederman, J. (2003). The Worldwide Prevalence of ADHD: Is it an American condition? World Psychiatry2, 104-113.Polanczyk, G., de Lima, M. S., Horta, B. L., Biederman, J. &Rohde, L. A. (2007). The Worldwide Prevalence of ADHD: a systematic Review and Meta-regression Analysis. Am J Psychiatry164,942-8.
Scheres, A., Lee, A. &Sumiya,M. (2008). Temporal reward discounting and ADHD: task and symptom-specific effects. J Neurol Transm115, 221-6.
Faraone, S., Biederman, J. &Mick, E. (2006). the Dependent Decline Of Attention-Deficit/Hyperactivity Disorder:  Aneta-Analysis Of Follow-Up Studies. Psychological Medicine36,159-165.

Related posts

No items found.

Swedish nationwide population study identifies top predictors of ADHD diagnoses among preschoolers

Most preschool-aged children diagnosed with ADHD also exhibit comorbid mental or developmental conditions. Long-term studies following these children into adulthood have demonstrated that higher severity of ADHD symptoms in early childhood is associated with a more persistent course of ADHD. 

The Study: 

Sweden has a single-payer national health insurance system that covers virtually all residents, facilitating nationwide population studies. An international study team (US, Brazil, Sweden) searched national registers for predictors of ADHD diagnoses among all 631,695 surviving and non-emigrating preschoolers born from 2001 through 2007.  

Preschool ADHD was defined by diagnosis or prescription of ADHD medications issued to toddlers aged three through five years old.  

Predictors were conditions diagnosed prior to the ADHD diagnosis. 

A total of 1,686 (2.7%) preschoolers were diagnosed with ADHD, with the mean age at diagnosis being 4.6 years. 

The Numbers:

Adjusting for sex and birth year, the team reported the following predictors, in order of magnitude: 

  • Previous diagnosis of autism spectrum disorder increased subsequent likelihood of ADHD diagnosis twentyfold. 
  • Previous diagnosis of intellectual disability increased subsequent likelihood of ADHD diagnosis fifteenfold. 
  • Previous diagnosis of speech/language developmental disorders and learning disorders, as well as motor and tic disorders, increased subsequent likelihood of ADHD diagnosis thirteen-fold. 
  • Previous diagnosis of sleep disorders increased subsequent likelihood of ADHD diagnosis fivefold. 
  • Previous diagnosis of feeding and eating disorders increased subsequent likelihood of ADHD diagnosis almost fourfold. 
  • Previous diagnosis of gastroesophageal reflux disease (GERD) increased subsequent likelihood of ADHD diagnosis 3.5-fold. 
  • Previous diagnosis of asthma increased subsequent likelihood of ADHD diagnosis 2.4-fold. 
  • Previous diagnosis of allergic rhinitis increased subsequent likelihood of ADHD diagnosis by 70%. 
  • Previous diagnosis of atopic dermatitis or unintentional injuries increased subsequent likelihood of ADHD diagnosis by 50%. 

The Conclusion: 

This large population study underscores that many conditions present in early childhood can help predict an ADHD diagnosis in preschoolers. Recognizing these risk factors early may aid in identifying and addressing ADHD sooner, hopefully improving outcomes for children as they grow

July 2, 2025

Northern Finnish Population Study Finds ADHD Slashes Higher Education Attainment, Comorbidity of ADHD + ODD much worse

Background:

Although ADHD typically begins in childhood, its symptoms frequently continue into adulthood, and it is widely acknowledged as having a lifelong prevalence for most persons with ADHD. 

ADHD symptoms are linked to poor academic performance, mainly due to cognitive issues like compromised working memory. These symptoms lead to long-term negative academic outcomes and difficulty in achieving higher educational degrees. 

Oppositional Defiant Disorder (ODD) often co-occurs with ADHD. In community samples, it appears in about 50–60% of those with ADHD. ODD symptoms include an angry or irritable mood, vindictiveness toward others, and argumentative or defiant behavior that lasts more than 6 months and significantly disrupts daily life.  

Since ODD tends to co-occur with ADHD, research on pure ODD groups without ADHD is limited, especially in community samples. This longitudinal study aimed to examine the impact of ADHD and ODD symptoms in adolescence on academic performance at age 16 and educational attainment by age 32. 

Study:

Finland, like other Nordic countries, has a single-payer health insurance system that includes virtually all residents. A Finnish research team used the Northern Finnish Birth Cohort to include all 9,432 children born from July 1, 1985, through June 30, 1986, and followed since then. 

ADHD symptoms were measured at age 16 using the Strengths and Weaknesses of ADHD symptoms and Normal-behaviors (SWAN) scale. 

Symptoms of ODD were screened using a 7-point rating scale similar to the SWAN scale, based on eight DSM-IV-TR criteria: “Control temper”, “Avoid arguing with adults”, “Follow adult requests or rules”, “Avoid deliberately annoying others”, “Assume responsibility for mistakes or misbehaviour”, “Ignore annoyances from others”, “Control anger and resentment”, and “Control spitefulness and vindictiveness.” 

Higher education attainments were determined at age 32. 

Results:

After adjusting for the educational attainments of the parents of the subjects, family type, and psychiatric disorders other than ADHD or ODD, males with ADHD symptoms at age 16 had a quarter, and females a little over a third, of the higher education attainments of peers without ADHD symptoms at age 32.  

With the same adjustments, males with ODD symptoms alone had two-thirds, and females 80%, of the higher education attainments of peers without ODD, but neither outcome was statistically significant. 

However, all participants with combined ADHD and ODD symptoms at age 16 had roughly one-fifth of the higher education attainments of peers without such symptoms upon reaching age 32. 

Interpretation: 

The team concluded, “The findings that emerged from this large longitudinal birth cohort study showed that the co-occurrence of ODD and ADHD symptoms in adolescence predicted the greatest deficits of all in educational attainment in adulthood.” 

This study highlights the significant, long-lasting impact that co-occurring ADHD and ODD symptoms can have on educational outcomes well into adulthood. It underscores the importance of addressing both disorders together during adolescence to help improve future academic success.

July 1, 2025

U.S. Nationwide Study Finds Down Syndrome Associated with 70% Greater Odds of ADHD

The Background:

Down syndrome (DS) is a genetic disorder resulting from an extra copy of chromosome 21. It is associated with intellectual disability. 

Three to five thousand children are born with Down syndrome each year. They have higher risks for conditions like hypothyroidism, sleep apnea, epilepsy, sensory issues, infections, and autoimmune diseases. Research on ADHD in patients with Down syndrome has been inconclusive. 

The Study:

The National Health Interview Survey (NHIS) is a household survey conducted by the National Center for Health Statistics at the CDC. 

Due to the low prevalence of Down syndrome, a Chinese research team used NHIS records from 1997 to 2018 to analyze data from 214,300 children aged 3 to 17, to obtain a sufficiently large and nationally representative sample to investigate any potential association with ADHD. 

DS and ADHD were identified by asking, “Has a doctor or health professional ever diagnosed your child with Down syndrome, Attention Deficit Hyperactivity Disorder (ADHD), or Attention Deficit Disorder (ADD)?” 

After adjusting for age, sex, and race/ethnicity, plus family highest education level, family income-to-poverty ratio, and geographic region, children and adolescents with Down syndrome had 70% greater odds of also having ADHD than children and adolescents without Down syndrome. There were no significant differences between males and females. 

The Take-Away:

The team concluded, “in a nationwide population-based study of U.S. children, we found that a Down syndrome diagnosis was associated with a higher prevalence of ASD and ADHD. Our findings highlight the necessity of conducting early and routine screenings for ASD and ADHD in children with Down syndrome within clinical settings to improve the effectiveness of interventions.” 

June 27, 2025