December 18, 2024
Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental condition that persists into adulthood for most individuals, affecting 60% to 90% of those diagnosed as children. However, understanding ADHD in older adults, particularly those over 50, remains limited. With the U.S. population aged 65+ projected to nearly double by 2050, this oversight has critical implications for healthcare.
A recent analysis of 20 studies (sample size: over 20 million) highlights ADHD prevalence in the elderly as 2.18% when community scales are used but only 0.23% when clinical diagnoses are reviewed in medical records. This discrepancy points to underdiagnosis and the need for clinician education. Furthermore, treatment rates are alarmingly low, with just 0.09% of elderly individuals receiving ADHD medications.
Current diagnostic criteria, still rooted in studies of youth, inadequately address age-specific symptoms. Barkley and Murphy’s screening tool is one step forward, but its moderate reliability signals the need for refinement. Diagnostic challenges grow more complex as clinicians must differentiate ADHD from cognitive changes due to aging, medical conditions, or psychiatric disorders like depression or dementia. The concurrent presence of conditions further complicates assessments and treatments.
Treatment hesitancy also hampers care. Concerns about cardiovascular risks, interactions with other medications, and lack of familiarity with ADHD medication dosing in older adults fuel clinician caution. While psychostimulants are generally safe when carefully managed, misconceptions about abuse and addiction persist, creating unnecessary barriers.
Addressing ADHD in older adults requires dedicated clinician training to overcome biases, refine diagnostic tools, and balance medical risks with the significant quality-of-life benefits ADHD treatment offers. With more research, improved clinical protocols, and better education, older adults with ADHD can receive accurate diagnoses and effective treatment. This will help them maintain cognitive function and independence, significantly enhancing their lives.
Goodman, D. W., Cortese, S., & Faraone, S. V. (2024). Why is ADHD so difficult to diagnose in older adults? Expert Review of Neurotherapeutics, 24(10), 941–944. https://doi.org/10.1080/14737175.2024.2385932
The current Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) requires evidence of symptom onset before age 12 to make a diagnosis of ADHD in adults.
A recently published clinical review questions the appropriateness of this criterion in older adults 50 years old and above. It sets forth several reasons:
On the other hand, the reason for the early onset criterion is to avoid any confusion with early neurodegenerative diseases such as Alzheimer's or Lewy body dementia, which have overlapping symptoms.
The authors suggest a possible fix:
It is unethical, the authors suggest, to deny care to older, presently undiagnosed adults, given the demonstrated poor outcomes associated with untreated ADHD.
The CDC recently reported that ADHD medication use in women ages 15 to 44 increased from 0.9 percent to 4 percent from 2003 to 2015. The most commonly used medications were formulations of amphetamine or methylphenidate.
This increase in treatment for ADHD suggests that educational programs such as adhdinadults.com have been effective in teaching clinicians how to identify and treat the disorder. The 4 percent rate reported by the CDC is encouraging because it is close to what Ron Kessler and colleagues reported as the prevalence of adult ADHD in the population. CDC correctly points out that little is known about the effects of ADHD medications on pregnancies. Thus, caution is warranted.
Oei et al.'s review of amphetamines concluded: "There is little evidence of amphetamine-induced neurotoxicity and long-term neurodevelopmental impact, as data is scarce and difficult to extricate from the influence of other factors associated with children living in households where one or more parent uses drugs in terms of poverty and neglect. ... We suggest that exposed children may be at risk of ongoing developmental and behavioral impediment, and recommend that efforts be made to improve early detection of perinatal exposure and to increase the provision of early intervention services for affected children and their families"
Bolea-Alamanac et al.'s review of methylphenidate effects concluded: "There is a paucity of data regarding the use of methylphenidate in pregnancy and further studies are required. Although the default medical position is to interrupt any non-essential pharmacological treatment during pregnancy and lactation, in ADHD this may present a significant risk. Doctors need to evaluate each case carefully before interrupting treatment." These words of caution should be heeded by clinicians caring for women of reproductive age.
Older adults are at greater risk for cardiovascular disease. Psychostimulants may contribute to that risk through side effects, such as elevation of systolic blood pressure, diastolic blood pressure, and heart rate.
On the other hand, smoking, substance abuse, obesity, and chronic sleep loss - all of which are associated with ADHD - are known to increase cardiovascular risk, and stimulant medications are an effective treatment for ADHD.
So how does this all shake out? A Dutch team of researchers sets out to explore this. Using electronic health records, they compared all 139 patients 55 years and older at PsyQ outpatient clinic, Program Adult ADHD, in The Hague. Because a principal aim of the study was to evaluate the effect of medication on cardiovascular functioning after first medication use, the 26 patients who had previously been prescribed ADHD medication were excluded from the study, leaving a sample size of 113.
The ages of participants ranged from 55 from 79, with a mean of 61. Slightly over half were women. At the outset, 13 percent had elevated systolic and/or diastolic blood pressure, 2 percent had an irregular heart rate, 15 percent had an abnormal electrocardiogram, and 29 percent had some combination of these (a "cardiovascular risk profile"), and 21 percent used antihypertensive medication.
Three out of four participants had at least e comorbid disorder. The most common are sleep disorders, affecting a quarter of participants, and unipolar mood disorders (depressive or more rarely manic episodes, but not both), also affecting a quarter of participants.
Twenty-four patients did not initiate pharmacological treatment. Of the 89 who received ADHD medication, 58 (65%) reported positive effects, and five experienced no effect. Thirty-eight (43%) discontinued ADHD medication while at the clinic due to lack of effect or to side effects. The most commonly reported positive effects were enhanced concentration, more overview, less restlessness, more stable mood, and having more energy. The principal reasons for discontinuing medication were anxiety/depression, cardiovascular complaints, and lack of effect.
Methylphenidate raised heart rate and lowered weight, but had no significant effect on systolic and diastolic blood pressure. Moreover, there was no significant correlation between methylphenidate dosage and any of these variables, nor between methylphenidate users taking hypertensive medication and those not taking such medication. There was no significant difference in systolic or diastolic blood pressure and heart rate before and after the use of methylphenidate among patients with the cardiovascular risk profiles.
Systolic blood pressure rose in ten out of 64 patients, with two experiencing an increase of at least 20 mmHg. It descended in five patients, with three having a decrease of at least 20 mmHg. Diastolic blood pressure rose by at least 10 mmHg in four patients, while dropping at least 10 mmHg in five others.
The authors concluded "that the use of a low dose of ADHD-medication is well tolerated and does not cause clinically significant cardiovascular changes among older adults with ADHD, even among those with an increased cardiovascular risk profile. Furthermore, our older patients experienced significant and clinically relevant improvement of their ADHD symptoms using stimulants, comparable with what is found among the younger age group," and that "the use of methylphenidate may be a relatively safe and effective treatment for older adults with ADHD, under the condition that all somatic complaints and especially cardiovascular parameters are monitored before and during pharmacological treatment."
Yet they cautioned that "due to the observational nature of the study and the lack of a control group, no firm conclusions can be drawn as to the effectiveness of the stimulants used. ... Important factors that were not systematically reported were the presence of other risk factors, such as smoking, substance (ab)use, aspirin use, and level of physical activity. In addition, the response to medication was not systematically measured"
Organic farming aims to protect biodiversity, promote animal welfare, and avoid using pesticides and fertilizers made from petrochemicals. Some pesticides are designed to target insects’ nervous systems but can also affect brain development and health in larger animals, including humans.
Many people believe organic food is healthier than conventionally produced food, which might be true for certain foods and health factors. But does eating organic food during pregnancy impact the chances of a child developing ADHD or autism spectrum disorder (ASD)?
In Norway, researchers can use detailed national health records to study these connections on a population-wide level, thanks to the country’s single-payer healthcare system and national registries.
The Norwegian Mother, Father, and Child Cohort Study (MoBa) invites parents to participate voluntarily and has a 41% participation rate. The study includes:
For this research, a team tracked 40,707 mother-child pairs from children born between 2002 and 2009. They used questionnaires to measure how much organic food mothers consumed during pregnancy. ADHD and ASD symptoms in children were assessed using validated rating scales.
The final analysis included:
The researchers adjusted for factors like maternal age, education, previous pregnancies, BMI before pregnancy, smoking and alcohol use during pregnancy, birth year and season, and the child’s sex.
The researchers concluded that eating organic food during pregnancy has no meaningful effect on the likelihood of a child developing ADHD or ASD. They stated, “The results do not indicate any clinically significant protective or harmful effects of eating organic food during pregnancy on symptoms of ADHD and ASD in the offspring. Based on these findings, we do not recommend any specific advice regarding intake of organic food during pregnancy.”
Infertility affects about one in six couples worldwide. To address this, medical experts have developed Assisted Reproductive Technologies (ART), including In Vitro Fertilization (IVF) with or without Intra-Cytoplasmic Sperm Injection (ICSI).
Some research suggests that children conceived through ART might have higher rates of intellectual disabilities, cerebral palsy, cancer, and neurological issues compared to children conceived naturally. However, studies looking at a possible link between ART and ADHD have produced mixed and conflicting results.
Until now, there hasn’t been a meta-analysis examining the connection between ART and ADHD. A South Korean research team has conducted the first systematic review and meta-analysis on this topic. Their final analysis included eight studies with a total of over ten million participants, comprising six cohort studies and two cross-sectional studies.
The research focused on two types of studies:
Both types of studies are observational, meaning they don’t involve controlled experiments and can be influenced by confounding factors. So they can document interesting associations, not causality. The studie were mostly large-scale national studies and used clinical ADHD diagnoses.
The researchers concluded that while there may be a small association between ART and ADHD, the effect is minimal, and the results are influenced by differences in study designs. They advised interpreting these findings with caution, noting, “The limited effect size and inherent heterogeneity underscore the need for cautious interpretation.”
Periodontitis, commonly known as gum disease, is a condition where the gums become inflamed. If untreated, it can cause the gums to pull back from the teeth, exposing their base, which may eventually lead to loose teeth or tooth loss. While this condition mostly affects adults, it’s also common among teens who don’t floss or brush their teeth properly.
Until now, only a few small studies have looked at a possible link between ADHD and gum disease. A team in Taiwan recently conducted a nationwide study to explore this connection.
Taiwan has a universal health insurance program, introduced in 1995, that provides medical care to nearly all (99.7%) residents. The Taiwan National Health Research Database collects and oversees all insurance claims, making it an excellent resource for large-scale studies.
The researchers used the database to identify teens aged 12 to 19 with ADHD (diagnosed by a psychiatrist) who had no history of gum disease between 2001 and 2011. These teens made up the ADHD group. They matched each ADHD participant with four teens who didn’t have ADHD or gum disease, creating a control group. The groups were matched by age, gender, enrollment date, family income, place of residence, and other health conditions (like obesity, diabetes, smoking, depression, and substance use).
All diagnoses of gum disease were confirmed by board-certified dentists.
The study included:
The researchers concluded that teens with ADHD have a higher risk of developing gum disease later on, even after accounting for other risk factors like smoking, diabetes, and depression. They stated, “ADHD is an independent risk factor for developing periodontitis.”