Cookie Preferences
By clicking, you agree to store cookies on your device to enhance navigation, analyze usage, and support marketing. More Info
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
December 18, 2024

Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental condition that persists into adulthood for most individuals, affecting 60% to 90% of those diagnosed as children. However, understanding ADHD in older adults, particularly those over 50, remains limited. With the U.S. population aged 65+ projected to nearly double by 2050, this oversight has critical implications for healthcare.
A recent analysis of 20 studies (sample size: over 20 million) highlights ADHD prevalence in the elderly as 2.18% when community scales are used but only 0.23% when clinical diagnoses are reviewed in medical records. This discrepancy points to underdiagnosis and the need for clinician education. Furthermore, treatment rates are alarmingly low, with just 0.09% of elderly individuals receiving ADHD medications.
Current diagnostic criteria, still rooted in studies of youth, inadequately address age-specific symptoms. Barkley and Murphy’s screening tool is one step forward, but its moderate reliability signals the need for refinement. Diagnostic challenges grow more complex as clinicians must differentiate ADHD from cognitive changes due to aging, medical conditions, or psychiatric disorders like depression or dementia. The concurrent presence of conditions further complicates assessments and treatments.
Treatment hesitancy also hampers care. Concerns about cardiovascular risks, interactions with other medications, and lack of familiarity with ADHD medication dosing in older adults fuel clinician caution. While psychostimulants are generally safe when carefully managed, misconceptions about abuse and addiction persist, creating unnecessary barriers.
Addressing ADHD in older adults requires dedicated clinician training to overcome biases, refine diagnostic tools, and balance medical risks with the significant quality-of-life benefits ADHD treatment offers. With more research, improved clinical protocols, and better education, older adults with ADHD can receive accurate diagnoses and effective treatment. This will help them maintain cognitive function and independence, significantly enhancing their lives.
Goodman, D. W., Cortese, S., & Faraone, S. V. (2024). Why is ADHD so difficult to diagnose in older adults? Expert Review of Neurotherapeutics, 24(10), 941–944. https://doi.org/10.1080/14737175.2024.2385932
The current Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) requires evidence of symptom onset before age 12 to make a diagnosis of ADHD in adults.
A recently published clinical review questions the appropriateness of this criterion in older adults 50 years old and above. It sets forth several reasons:
On the other hand, the reason for the early onset criterion is to avoid any confusion with early neurodegenerative diseases such as Alzheimer's or Lewy body dementia, which have overlapping symptoms.
The authors suggest a possible fix:
It is unethical, the authors suggest, to deny care to older, presently undiagnosed adults, given the demonstrated poor outcomes associated with untreated ADHD.
The CDC recently reported that ADHD medication use in women ages 15 to 44 increased from 0.9 percent to 4 percent from 2003 to 2015. The most commonly used medications were formulations of amphetamine or methylphenidate.
This increase in treatment for ADHD suggests that educational programs such as adhdinadults.com have been effective in teaching clinicians how to identify and treat the disorder. The 4 percent rate reported by the CDC is encouraging because it is close to what Ron Kessler and colleagues reported as the prevalence of adult ADHD in the population. CDC correctly points out that little is known about the effects of ADHD medications on pregnancies. Thus, caution is warranted.
Oei et al.'s review of amphetamines concluded: "There is little evidence of amphetamine-induced neurotoxicity and long-term neurodevelopmental impact, as data is scarce and difficult to extricate from the influence of other factors associated with children living in households where one or more parent uses drugs in terms of poverty and neglect. ... We suggest that exposed children may be at risk of ongoing developmental and behavioral impediment, and recommend that efforts be made to improve early detection of perinatal exposure and to increase the provision of early intervention services for affected children and their families"
Bolea-Alamanac et al.'s review of methylphenidate effects concluded: "There is a paucity of data regarding the use of methylphenidate in pregnancy and further studies are required. Although the default medical position is to interrupt any non-essential pharmacological treatment during pregnancy and lactation, in ADHD this may present a significant risk. Doctors need to evaluate each case carefully before interrupting treatment." These words of caution should be heeded by clinicians caring for women of reproductive age.
Older adults are at greater risk for cardiovascular disease. Psychostimulants may contribute to that risk through side effects, such as elevation of systolic blood pressure, diastolic blood pressure, and heart rate.
On the other hand, smoking, substance abuse, obesity, and chronic sleep loss - all of which are associated with ADHD - are known to increase cardiovascular risk, and stimulant medications are an effective treatment for ADHD.
So how does this all shake out? A Dutch team of researchers sets out to explore this. Using electronic health records, they compared all 139 patients 55 years and older at PsyQ outpatient clinic, Program Adult ADHD, in The Hague. Because a principal aim of the study was to evaluate the effect of medication on cardiovascular functioning after first medication use, the 26 patients who had previously been prescribed ADHD medication were excluded from the study, leaving a sample size of 113.
The ages of participants ranged from 55 from 79, with a mean of 61. Slightly over half were women. At the outset, 13 percent had elevated systolic and/or diastolic blood pressure, 2 percent had an irregular heart rate, 15 percent had an abnormal electrocardiogram, and 29 percent had some combination of these (a "cardiovascular risk profile"), and 21 percent used antihypertensive medication.
Three out of four participants had at least e comorbid disorder. The most common are sleep disorders, affecting a quarter of participants, and unipolar mood disorders (depressive or more rarely manic episodes, but not both), also affecting a quarter of participants.
Twenty-four patients did not initiate pharmacological treatment. Of the 89 who received ADHD medication, 58 (65%) reported positive effects, and five experienced no effect. Thirty-eight (43%) discontinued ADHD medication while at the clinic due to lack of effect or to side effects. The most commonly reported positive effects were enhanced concentration, more overview, less restlessness, more stable mood, and having more energy. The principal reasons for discontinuing medication were anxiety/depression, cardiovascular complaints, and lack of effect.
Methylphenidate raised heart rate and lowered weight, but had no significant effect on systolic and diastolic blood pressure. Moreover, there was no significant correlation between methylphenidate dosage and any of these variables, nor between methylphenidate users taking hypertensive medication and those not taking such medication. There was no significant difference in systolic or diastolic blood pressure and heart rate before and after the use of methylphenidate among patients with the cardiovascular risk profiles.
Systolic blood pressure rose in ten out of 64 patients, with two experiencing an increase of at least 20 mmHg. It descended in five patients, with three having a decrease of at least 20 mmHg. Diastolic blood pressure rose by at least 10 mmHg in four patients, while dropping at least 10 mmHg in five others.
The authors concluded "that the use of a low dose of ADHD-medication is well tolerated and does not cause clinically significant cardiovascular changes among older adults with ADHD, even among those with an increased cardiovascular risk profile. Furthermore, our older patients experienced significant and clinically relevant improvement of their ADHD symptoms using stimulants, comparable with what is found among the younger age group," and that "the use of methylphenidate may be a relatively safe and effective treatment for older adults with ADHD, under the condition that all somatic complaints and especially cardiovascular parameters are monitored before and during pharmacological treatment."
Yet they cautioned that "due to the observational nature of the study and the lack of a control group, no firm conclusions can be drawn as to the effectiveness of the stimulants used. ... Important factors that were not systematically reported were the presence of other risk factors, such as smoking, substance (ab)use, aspirin use, and level of physical activity. In addition, the response to medication was not systematically measured"
While ADHD is a developmental disorder, shaped by biology and genetics, growing evidence shows that it is also influenced by the social and environmental conditions in which children grow up. Research on the social determinants of health emphasizes that development is shaped not only by biology but also by factors such as family income, access to healthcare, neighborhood safety, and material stability. These factors can affect both how developmental challenges appear and whether they are recognized and diagnosed.
Children facing socioeconomic disadvantage consistently show higher risks of developmental and behavioral difficulties. Chronic stress linked to poverty – including financial strain, food insecurity, and limited access to resources – has been associated with problems in attention, emotional regulation, and daily functioning. Children from lower-income families also tend to experience more severe ADHD symptoms and face greater barriers to ongoing care.
Neighborhood conditions matter as well. Unsafe environments can limit opportunities for play and social interaction while increasing caregiver stress, all of which may influence children’s behavior and development. Material hardships, such as food insecurity, can further undermine stability at home.
The Study:
The study analyzed six years of data from the National Survey of Children’s Health (2018–2023), covering more than 205,000 U.S. children aged 3 to 17. After accounting for age, sex, race and ethnicity, region, family structure, survey year, and other social factors, the researchers found a strong income gradient in ADHD prevalence. Compared with children in households earning at least four times the federal poverty level, those in households earning two to four times that level had 28 percent higher odds of ADHD. Odds rose to 70 percent higher in households earning one to two times the poverty level, and more than doubled among children living below the poverty line.
Parental education showed a similar pattern. Compared with children whose parents had completed college, ADHD odds were 20 percent higher among those whose parents had some college education, 40 percent higher among those whose parents had only a high school education, and 80 percent higher among those whose parents had not finished high school.
Children living in unsafe neighborhoods had nearly twice the odds of ADHD compared with those in safe neighborhoods, and food insecurity was also linked to almost double the odds.
By contrast, race and ethnicity alone were associated with much smaller differences. Compared with non-Hispanic White children, children in non-Hispanic Black households had an 18 percent higher likelihood of ADHD, while children in Hispanic households had a 25 percent lower likelihood. No substantial differences were observed for children from other or multiracial households.
Conclusion and Takeaway:
The study team concluded, “Children living in lower-income households, experiencing food insecurity, and residing in unsafe neighborhoods consistently showed higher prevalence and higher adjusted odds of both conditions. … Overall, these findings reinforce the need to view neurodevelopmental disorders within a broader social and structural framework.”
It should be noted that this study is not aiming to name social factors as direct causes of ADHD. Rather, it points to socioeconomic disparities as contributing to the way ADHD develops and how it is treated. This type of research, as well as acknowledging barriers to care, is crucial for clinicians, counselors, teachers, etc., to consider when working with youth with ADHD.
Counting umbilical cord vessels is standard in prenatal ultrasounds and confirmed at birth. Single umbilical artery (SUA) occurs in about 1 in 200 cases, with roughly 10% associated with anomalies, including central nervous system defects. Isolated SUA (iSUA) means one artery is missing without other structural issues.
Research on SUA, especially isolated iSUA, and childhood neurodevelopmental disorders (NDD) is limited and inconclusive. iSUA is linked to preterm birth and small-for-gestational age (SGA), both of which are NDD risk factors.
This Norwegian nationwide population study aimed to assess NDD risk in children with iSUA at birth, the influence of sex, and how preterm birth and SGA mediate this relationship.
The nation’s universal single-payer health insurance and comprehensive population registries made it possible to analyze all 858,397 single births occurring from 1999 to 2013, with follow-up continuing through 2019. Among these cases, 3,532 involved iSUA.
After adjusting for confounders such as parental age, education, and maternal health factors, no overall link was found between iSUA and later ADHD diagnosis. However, females with iSUA had about a 40% higher risk of subsequent ADHD compared to those without iSUA, even after adjustment.
The authors concluded, “The present study indicates that iSUA is weakly associated with ID [intellectual disability] and ADHD, and these associations are influenced by sex. This association is mediated negligibly through preterm birth and SGA. The associations were not clinically significant, and the absence of associations of iSUA with other NDD is reassuring. This finding can be useful in the counseling of expectant parents of fetuses diagnosed with iSUA.”
Refractive errors, such as myopia (nearsightedness), hyperopia (farsightedness), and astigmatism (distorted vision due to irregular curvature of the eye or lens), are common worldwide. These conditions affect 12%, 5%, and 15% of children, and rise significantly in adults to 26.5%, 31%, and 40%. Additionally, strabismus (misalignment of the eyes) and amblyopia (reduced vision in one eye from uneven image formation, often linked to strabismus) occur globally at rates of 2% and 1.4%, respectively.
Visual impairment can affect children’s concentration in school, and studies suggest a link between eye disorders and ADHD.
To investigate this relationship, two researchers – one based in the US and the other in Israel –carried out a nationwide retrospective cohort study using electronic medical records of all insured individuals aged 5 to 30 who were part of Maccabi Health Services, Israel’s second largest health maintenance organization, between 2010 and 2022.
Of over 1.6 million insured members (2010–2020), inclusion/exclusion criteria and propensity score matching for age and sex were applied, along with a one-year wash-out period between the first eye diagnosis and ADHD diagnosis. In total, 221,707 cases were matched with controls without eye disorders at a 1:2 ratio, resulting in a cohort of 665,121 participants.
Overall, those with any previous eye diagnosis were 40% more likely to have a subsequent ADHD diagnosis. This was slightly higher for females (45%) than for males (35%). It was also slightly higher for children and adolescents (42%) than for adults (37%).
More specifically:
The authors concluded that eye disorders are associated with ADHD. They noted these associations were more marked in females and children and adolescents, although, as noted above, those differences were small. They recommended that primary care providers and neurologists consider risk stratification for early screening, and that ophthalmologists refer high-risk patients for ADHD evaluation.
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. More Info
By clicking, you agree to store cookies on your device to enhance navigation, analyze usage, and support marketing. More Info