Cookie Preferences
By clicking, you agree to store cookies on your device to enhance navigation, analyze usage, and support marketing. More Info
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
X
April 2, 2022

China is the outstanding economic growth story of the early twenty-first century. According to the World Bank, China has “experienced the fastest sustained expansion by a major economy in history – and has lifted more than 800 million people out of poverty.”
That expansion has been accompanied by major investments in medical research, and medical treatment capability, especially in the major urban centers that have spearheaded the boom. Life expectancy has risen from 71 in 2000 to 77 in 2019, nearing the U.S. level of 79.
Yet when it comes to pharmaceutical treatment of ADHD, China is an outlier, as revealed by a new study exploring the data in the two main medical insurance programs for its urban population.
The Urban Employee Basic Medical Insurance(UEBMI) covers both employers and employees in public and private workplaces, while the Urban Residents Basic Medical Insurance (BMI) covers the unemployed. As of 2014, these programs cover over 97% of urban residents. The China Health Insurance Research Association (CHIRA) database is a random sampling database from the UEBMI and UBMI databases.
The study population consisted of residents of the 63 cities in the CHIRA database from 2013 through 2017. Prescription prevalence was calculated by dividing the total number of patients prescribed ADHD medications in the CH IRA database by the urban population of the included cities, which was two hundred million as of 2017.
Other studies have found the prevalence of ADHD among Chinese children and adolescents to be about 6.5%, comparable to North American and European countries. Yet, the prescription prevalence of ADHD medications was 0.036% among those aged 0–14 years in 2017 in China. In other words, only about one in every two hundred youths with ADHD were being prescribed pharmaceutical treatments.
For further context, among other economically prosperous countries in Asia, Australia, North America, and Europe, the lowest prescription prevalence of ADHD medications is 0.27% in France, which is still over seven times higher than the Chinese level.
Among Chinese urban dwellers from 15 through 64 years of age, ADHD prescription prevalence in 2017 dropped by a further order of magnitude (over tenfold) to 0.003%, and among those 65 and older, to a scant 0.001%.
The Chinese study team suggested several likely contributing factors:
Lu Xu, XiaozhenLv, Huali Wang, Qingjing Liu, Shuzhe Zhou, Shuangqing Gao, Xin Yu, Siwei Deng, Shengfeng Wang, Zheng Chang, and Siyan Zhan, “Trends in Psychotropic Medication Prescriptions in Urban China From 2013 to2017: National Population-Based Study,” Frontiers in Psychiatry(2021), vol.12, Article 727453, published online,https://doi.org/10.3389/fpsyt.2021.727453. Macrotrends, “China Life Expectancy 1950-2021,” https://www.macrotrends.net/countries/CHN/china/life-expectancy. World Bank, China Overview, March 28, 2017, http://www.worldbank.org/en/country/china/overview.
Boys are three times as likely as girls to be diagnosed with ADHD, and anywhere from three to sixteen times more likely to be referred for treatment.
An international team of experts recently published a consensus statement addressing this discrepancy and offering guidance to rectify the imbalance and improve diagnosis and care for girls and women with ADHD. Here are some key conclusions.
ADHD symptoms:
-Experts caution that ADHD behaviors typically express themselves differently in boys than in girls.
-That in turn leads to gender-based biases in teachers and parents. In two studies in which teachers were shown vignettes of individuals with typical ADHD behaviors, switching from female to male names and pronouns led to higher rates of referral for support and treatment.
Comorbidity:
-A major reason for this different expression of ADHD in boys is that they have much higher rates of comorbid externalizing disorders, such as the conduct disorder and oppositional defiant disorder, leading them to break rules and get into fights in school. This no doubt contributes to lower rates of referral for girls.
-On the other hand, females are more likely to have comorbid internalizing disorders, such as emotional problems, anxiety, and depression. These may be interpreted as primary conditions, and the link to ADHD is missed altogether.
-Because ADHD has come to be associated with many externalizing disorders, it is then easy to fail to identify it when it is associated with internalizing disorders such as eating disorders. 
-Untreated ADHD in girls can increase the risk of substance use disorders.
Associated vulnerabilities:
Children with ADHD are more likely to be unpopular with their peers and to experience rejection. Whereas boys are more likely to experience that rejection in physical ways, girls are more likely to experience it in social ways and through cyberbullying. That, in turn, contributes to lower self-esteem, which could explain some comorbid internalizing disorders.
Symptoms of hyperactivity/impulsivity, one of the two key components of ADHD, are associated with higher rates of risk-taking behavior:
- Like males with ADHD, females with ADHD have higher injury rates.
-Both males and females with ADHD are more likely to underachieve in school or drop out altogether.
-Overall, adolescents with ADHD become sexually active earlier, have more sexual partners, and are more frequently treated for sexually transmitted diseases than their normally developing peers. That also leads to higher rates of teenage and unplanned pregnancies.
-As with males with ADHD, females with ADHD have higher rates of criminal behavior than normally developing peers. While females with ADHD are still half as likely to be convicted of a crime than males with ADHD, one study showed they nevertheless are eighteen times more likely to be convicted of a crime than normally developing females.
Compensatory or coping behaviors:
- Girls may turn to drink alcohol, smoking cannabis, smoking cigarettes, or vaping nicotine to cope with emotional anguish, social isolation, and rejection.
-Some girls may seek to build social support through high-risk activities such as joining a gang, becoming promiscuous, and engaging in criminal behavior. 
Triggers for possible referral
Ages 5-11:
-Bedwetting, nail-biting
Ages 5-16:
-Early sexualized behavior
Ages 5-18:
-Suspensions, expulsions, frequent detentions
-Poor attendance/truancy
-Consistent lateness, poor organization
-Academic difficulties, low academic self-esteem
-Conduct problems, conflicts with parents and peers
-Bullying (usually as victims)
-Regular tobacco and alcohol use
- Obesity and other eating disorders
- Repeated injuries
- Sleep difficulties
- Executive function difficulties
- Extreme emotional meltdowns
Ages 12 and above:
- Relationship problems, anxiety about relationships
- Social rejection, isolation
- Substance abuse, including alcohol
- Risky sexual behavior
- Underage or unwanted pregnancy
- Delinquency or criminal behavior (including shoplifting, vandalism)
- Low self-esteem
- Self-harm, suicidality
Ages 16 and above:
- Dropping out of school
- Losing jobs
- Parenting problems
- Criminality
- Financial difficulties
- Traffic crashes
- Internalizing conditions: depression, anxiety
Ages 18 and above:
- Gambling problems, compulsive shopping
- Personality disorder
- Chronic fatigue syndrome
- Fibromyalgia
The key message is not to disregard females because they do not present with the externalizing behavioral problems, or the disruptive, hard-to-manage boisterous, or loud behaviors typically associated with males with ADHD.
Diagnosis
The authors emphasize that "comprehensive assessment should be completed to accurately capture the symptoms of ADHD across multiple settings, their persistence over time, and associated functional impairments. High rates of comorbidity are typically present. The assessment process is typically tripartite, involving the use of rating scales, a clinical interview, and ideally objective information from informants or school reports."
Rating scales: Ideally rely on those that provide female norms, making them more sensitive to female presentation.
Clinical interviews:
-Be mindful of age-appropriate, common-occurring conditions in females with ADHD, including autistic spectrum disorder, tics, mood disorders, anxiety, eating disorders, fibromyalgia, and chronic fatigue syndrome.
- Be alert to signs of self-harming behaviors(especially cutting), which peak in adolescence and early adulthood.
-Given that heritability of ADHD is high, ranging between 70-80% in both children and adults, be mindful that informants who are family members may also have ADHD (possibly undiagnosed) which may affect their judgment of "typical" behavior. The assessor should obtain specific examples of behavior from the informant and use these to make clinically informed judgments, rather than relying upon the informants' perception of what is typical or atypical.
Treatment
Pharmacological:
- Recommendations for medication do not differ by sex, except that pharmacological treatment is generally not advised during pregnancy or breastfeeding.
- A systematic review and network meta-analysis recommended methylphenidate for children and adolescents and amphetamines for adults, taking into account both efficacy and safety. Larger confidence intervals about the tolerability and efficacy of bupropion, clonidine, and guanine were reported, indicating less conclusive results about the efficacy and tolerability of these oral medications. The use of medication should be followed up over time to verify if medications are effective and well-tolerated, and to manage the effects of related conditions(e.g. anxiety, depression) if they emerge.
Non-pharmacological:
- Cognitive behavioral therapy (CBT) together with psychoeducation (which can be provided to both patients and parent/guardians together or independently) are the best forms of psychological treatment. 
- Parents and other guardians of teenage girls need to be shown how to identify deliberate self-harming or risky behavior.
- Adolescent girls may require assistance in addressing risky behavior (sexual risk, substance misuse) and improving self-management. Girls with ADHD are more vulnerable to sexual exploitation and have higher rates of early and unwanted pregnancy. 
- Adults are more likely to require interventions to address employment problems, child-rearing, and parenting. Women with ADHD are also more vulnerable to sexual exploitation, including physical and sexual violence.
- Interventions should support attendance and engagement with education to avoid early school-leaving, diminished educational attainment, and associated vulnerabilities. While externalizing conditions have a greater impact on classroom behavior, internalizing conditions affect motivation and thus the ability to benefit from education.
Institutional outreach
- Educational, social care, occupational, and criminal justice system professionals should be trained to improve the detection and referral of ADHD in girls and women.
- Flexible learning systems and support with childcare can help women with ADHD return to education after having a baby. 
- Depending on the country of residence, women who disclose their disability to their employer may be entitled to reasonable adjustments to the workplace to accommodate their condition. 
- Low to no-cost apps are available to assist persons with ADHD with itineraries, lists, and reminders.
- Career planning should take into account that some occupations may provide a better fit for women with ADHD: "some individuals with ADHD show a preference for more stimulating environments, active, hands-on, or busy and fast-paced jobs."
- Persons with ADHD, both male and female, make up roughly a quarter of the prison population: "Evidence indicates that ADHD treatment is associated with reduced rates of criminality, is tolerated and effective in prison inmates, and improves their quality of life and cognitive function. This has led to speculation that effective identification and treatment of ADHD may help to reduce re-offending."
The authors concluded, "To facilitate identification, it is important to move away from the previously predominating disruptive boy stereotype of ADHD and understand the more subtle and internalized presentation that predominates in girls and women."
There have been indications that infants who have difficulty sleeping are more likely to later develop ADHD in childhood. Would this hold up in a large nationwide cohort study?
Noting that "Norway has several national health registries with compulsory and automatically collected information," and "registries can be linked on an individual level, making it possible to conduct large cohort studies," a Norwegian team of researchers studied the association between sleep-inducing medications prescribed to infants under three years old and diagnoses of ADHD between the ages of five and eleven.
Norway has a national health insurance system that covers all residents, and pays in full for youths under 16 years old. Norwegian pharmacies must register all dispensed prescriptions into a national register as a prerequisite for reimbursement.
The study included all children born in Norway from 2004 through 2010, minus those who died or emigrated, leaving a total of 410,555 children.
In addition to traditional hypnotic and sedative drugs and melatonin, the study looked at antihistamines, which though intended for respiratory use, are frequently used for gentle sedation.
The two most frequently prescribed drugs were found to be dexchlorpheniramine (girls 7%, boys 8%) and trimeprazine(girls 3%, boys 4%), both of which are antihistamines.
After adjusting for parental education as an indicator of family socioeconomic status, and parental ADHD as indicated by prescription of ADHD medications, girls who had been prescribed sleeping medications on at least two occasions were twice as likely to subsequently develop ADHD, and boys about 60 percent more likely. For, dexchlorpheniramine equivalent associations were not statistically significant for either boys or girls. But girls prescribed trimeprazine on at least two occasions were almost three times as likely to subsequently develop ADHD, and boys were well over twice as likely.
A limitation of the study was that there was no direct data for sleep diagnosis. The authors noted, "The Norwegian prescription database does not contain diagnosis unless medications are reimbursed and hypnotics are not reimbursed for insomnia or sleep disturbances in general. Sleep diagnoses were also not available from the Norwegian Patient Registry, as there seems to be a clinical tradition for not using the ICD- 10G47 Sleep Disorders diagnosis for children."
The authors concluded, "It has previously been shown that infant regulation problems, including sleep problems, are associated with ADHD diagnosis. We replicate this finding in a large cohort, where continuous data collection ensures no recall bias and no loss to follow-up. We find that the use of hypnotic drugs before 3 years of age, signifying substantial sleeping problems, increases the risk of a later ADHD diagnosis. This was especially true for the antihistaminic drug, trimeprazine."
Noting that to date, no study investigated potential behavioral and neural markers in adults with subthreshold ADHD as compared to adults with full syndrome ADHD and healthy controls, the German team of researchers at the University of Tübingen out to do just that, recruiting volunteers through flyers and advertisements.
Their ADHD sample consisted of 113 adults between 18 and 60 years of age (mean age 38) who fulfilled the DSM-IV-TR criteria of ADHD and were either not on medication or a steady dose of medication over the prior two months.
Another 46 participants (also mean age 38), whose symptoms did not reach the DSM-IV-TR criteria, were assigned to the group with subthreshold ADHD.
The control sample was comprised of 42 healthy participants (mean age 37).
Individuals with schizophrenia, bipolar disorder, borderline personality disorder, epilepsy, or traumatic brain injury were excluded from the sample, as were those with current substance abuse or dependence.
All participants were German-speaking Caucasians. There were no significant differences in gender, age, education, or verbal/nonverbal intelligence among the three groups.
Participants first completed an online pre-screening, which was followed up with an interview to confirm the ADHD diagnosis.
ADHD impairs executive functions, "defined as the 'top-down' cognitive abilities for maintaining problem-solving skills to achieve future goals." The researchers explored three categories of executive functioning: 1) capacity for inhibition, "the ability to inhibit dominant, automatic, or prepotent responses when necessary- 2) ability to shift, enabling smooth switching between tasks or mental sets; and 3) ability to update, "updating and monitoring of working memory representations." Participants took a battery of neuropsychological tests to assess performance in each category.
Significant differences emerged between the group with ADHD and healthy controls in all measures except one: the STROOP Reading test. But there were no significant differences between participants suffering from subthreshold and full-syndrome ADHD. Nor were there any significant differences between those with subthreshold ADHD and healthy controls.
The researchers also recorded electroencephalograms(EEGs) for each participant. In healthy individuals, there is little to no association between resting-state EEG spectral power measures and executive functions. In individuals with ADHD, some studies have indicated increased theta-to-beta ratios, while others have found no significant differences. This study found no significant differences between the three groups.
The authors concluded, "The main results of the study can be summarized as follows: First, increased executive function deficits (in updating, inhibition, and shifting functions) could be observed in the full syndrome ADHD as compared to the healthy control group while, on the electrophysiological level, no differences in the theta to the beta ratio between these groups were found. Second, we observed only slightly impaired neuropsychological functions and no abnormal electrophysiological activity in the subthreshold ADHD sample. Taken together, our data suggest some practical uses of the assessment of objective cognitive markers but no additional value of examining electrophysiological characteristics in the diagnosis of subthreshold and full syndrome ADHD in adulthood."
They added, "These findings deeply question the value of including resting EEG markers into the diagnostic procedure and also have implications for standard neurofeedback protocols frequently used in the treatment of ADHD, where patients are trained to reduce their theta power while simultaneously increasing beta activity."
Background:
Pharmacotherapies, such as methylphenidate, are highly effective for short-term ADHD management, but issues remain with medication tolerability and adherence. Some patients experience unwanted side effects from stimulant medications, leaving them searching for alternative ADHD treatments. Alternative treatments such as cognitive training, behavioral therapies, psychological interventions, neurofeedback, and dietary changes have, so far, shown limited success. Thus, there is a critical need for non-pharmacological options that boost neurocognitive performance and address core ADHD symptoms.
First— What Are NIBS (Non-Invasive Brain Stimulation) Techniques?
Non-invasive brain stimulation (NIBS) techniques, including transcranial direct current stimulation (tDCS), transcranial random noise stimulation (tRNS), transcranial alternating current stimulation (tACS), and repetitive transcranial magnetic stimulation (rTMS) are generating growing attention within the scientific community.
NIBS techniques are methods that use external stimulation, such as magnets or electrical currents, to affect brain activity without any invasive procedures. In transcranial alternating current stimulation (tACS), for example, small electrodes are placed on the scalp of the patient, and a weak electrical current is administered.
The theory behind these techniques is that when a direct current is applied between two or more electrodes placed on specific areas of the head, it makes certain neurons more or less likely to fire. This technique has been successfully used to treat conditions like depression and anxiety, and to aid recovery from stroke or brain injury.
The Study: 
Previous meta-analyses have produced conflicting indications of efficacy. A Chinese research team consisting of sports and rehabilitative medicine professionals has just published a network meta-analysis to explore this further, through direct comparison of five critical outcome domains: inhibitory control, working memory, cognitive flexibility, inattention, hyperactivity and impulsivity.
To be included, randomized controlled trials needed to have participants diagnosed with ADHD, use sham control groups, and assess ADHD symptoms and executive functions – such as inhibitory control, working memory, cognitive flexibility, inattention, hyperactivity, and impulsivity – using standardized tests.
A total of thirty-seven studies encompassing 1,615 participants satisfied the inclusion criteria. It is worth noting, however, that the authors did not specify the number of randomized controlled trials nor the number of participants included in each arm of the network meta-analysis.
Furthermore, the team stated, “We checked for potential small study effects and publication bias by conducting comparison-adjusted funnel plots,” but did not share their findings. They also did not provide information on outcome variation (heterogeneity) among the RCTs.
Results:
Ultimately, none of the interventions produced significant improvements in ADHD symptoms, whether in inattention symptoms or hyperactivity/impulsivity symptoms. Likewise, none of the interventions produced significant improvements in inhibitory control. Some tDCS interventions enhanced working memory and cognitive flexibility, but details about trial numbers and participants were missing. The team concluded, “none of the NIBS interventions significantly improved inhibitory control compared to sham controls. … In terms of working memory, anodal tDCS over the left DLPFC plus cathodal tDCS over the right DLPFC … and anodal tDCS over the right inferior frontal cortex (rIFC) plus cathodal tDCS over the right supraorbital area ... were associated with significant improvements compared to sham stimulation. For cognitive flexibility, only anodal tDCS over the left DLPFC plus cathodal tDCS over the right supraorbital area demonstrated a statistically significant benefit relative to sham. ... Compared to the sham controls, none of the NIBS interventions significantly improved inattention. ... Compared to the sham controls, none of the NIBS interventions significantly improved hyperactivity and impulsivity.”
How Should We Interpret These Results?
In a word, skeptically.
If one were to read just the study’s abstract, which states, “The dual-tDCS and a-tDCS may be considered among the preferred NIBS interventions for improving cognitive function in ADHD”, it might seem that the takeaway from this study is that this combination of brain stimulation techniques might be a viable treatment option for those with ADHD. Upon closer inspection, however, the results do not suggest that any of these methods significantly improve ADHD symptoms. Additionally, this study suffers from quite a few methodological flaws, so any results should be viewed critically.
Background:
Despite recommendations for combined pharmacological and behavioral treatment in childhood ADHD, caregivers may avoid these options due to concerns about side effects or the stigma that still surrounds stimulant medications. Alternatives like psychosocial interventions and environmental changes are limited by questionable effectiveness for many patients. Increasingly, patients and caregivers are seeking other therapies, such as neuromodulation – particularly transcranial direct current stimulation (tDCS).
tDCS seeks to enhance neurocognitive function by modulating cognitive control circuits with low-intensity scalp currents. There is also evidence that tDCS can induce neuroplasticity. However, results for ADHD symptom improvement in children and adolescents are inconsistent.
The Method:
To examine the evidence more rigorously, a Taiwanese research team conducted a systematic search focusing exclusively on randomized controlled trials (RCTs) that tested tDCS in children and adolescents diagnosed with ADHD. They included only studies that used sham-tDCS as a control condition – an essential design feature that prevents participants from knowing whether they received the active treatment, thereby controlling for placebo effects.
The Results:
Meta-analysis of five studies combining 141 participants found no improvement in ADHD symptoms for tDCS over sham-TDCS. That held true for both the right and left prefrontal cortex. There was no sign of publication bias, nor of variation (heterogeneity) in outcomes among the RCTs.
Meta-analysis of six studies totaling 171 participants likewise found no improvement in inattention symptoms, hyperactivity symptoms, or impulsivity symptoms for tDCS over sham-TDCS. Again, this held true for both the right and left prefrontal cortex, and there was no sign of either publication bias or heterogeneity.
Most of the RCTs also performed follow-ups roughly a month after treatment, on the theory that induced neuroplasticity could lead to later improvements.
Meta-analysis of four RCTs combining 118 participants found no significant improvement in ADHD symptoms for tDCS over sham-TDCS at follow-up. This held true for both the right and left prefrontal cortex, with no sign of either publication bias or heterogeneity.
Meta-analysis of five studies totaling 148 participants likewise found no improvement in inattention symptoms or hyperactivity symptoms for tDCS over sham-TDCS at follow-up. AS before, this was true for both the right and left prefrontal cortex, with no sign of either publication bias or heterogeneity.
The only positive results came from meta-analysis of the same five studies, which reported a medium effect size improvement in impulsivity symptoms at follow-up. Closer examination showed no improvement from stimulation of the right prefrontal cortex, but a large effect size improvement from stimulation of the left prefrontal cortex.
Interpretation:
It is important to note that the one positive result was from three RCTs combining only 90 children and adolescents, a small sample size. Moreover, when only one of sixteen combinations yields a positive outcome, that begins to look like p-hacking for a positive result.
In research, scientists use something called a “p-value” to determine if their findings are real or just due to chance. A p-value below 0.05 (or 5%) is considered “statistically significant,” meaning there's less than a 5% chance the result happened by pure luck.
When testing twenty outcomes by this standard, one would expect one to test positive by chance even if there is no underlying association. In this case, one in 16 comes awfully close to that.
To be sure, the research team straightforwardly reported all sixteen outcomes, but offered an arguably over-positive spin in their conclusion: “Our study only showed tDCS-associated impulsivity improvement in children/adolescents with ADHD during follow-ups and anode placement on the left PFC. ... our findings based on a limited number of available trials warrant further verification from large-scale clinical investigations.”
Children and adolescents with ADHD tend to be less active and more sedentary than their typically developing peers. This is concerning, since physical activity benefits mental, physical, and social development. For youth with ADHD, being active can improve symptoms like inattention, working memory, and inhibitory control.
A major barrier to physical activity for children and adolescents with ADHD is limited motor competence. This stems from challenges in developing basic motor skills and more complex abilities needed for sports and advanced movements.
Difficulties in developing fundamental movement skills – such as locomotor (running, jumping), object-control (throwing, catching), and stability skills (balancing, turning) – can reduce motor competence and limit physical activity. These basic movements are learned and refined with practice and age, not innate abilities.
To date, research on the link between ADHD and motor competence has remained inconclusive. This systematic review and meta-analysis by a Spanish research team therefore aimed to determine whether children and adolescents with ADHD differ in motor competence from those with typical development (TD).
Studies had to include children and adolescents diagnosed with ADHD. They had to involve a full motor assessment battery, not just one test, and present motor competence data for both ADHD and TD groups.
The team excluded studies involving participants with other neurodevelopmental disorders or cognitive impairments, unless separate data for the ADHD subgroup were reported.
Meta-analysis of six studies combining 323 children and adolescents found that typically developing individuals were twelve times more likely to score in the 5th percentile of the Movement Assessment Battery for Children as their peers diagnosed with ADHD. They were also three times more likely to score in the 15th percentile (five studies, 289 participants). Results were consistent across the studies (low heterogeneity). All included studies were randomized.
Meta-analysis of five studies totaling 198 participants using the Test of Gross Motor Development reported significant deficits in both locomotor skills and object control skills among children and adolescents diagnosed with ADHD relative to their typically developing peers. In this case, however, results were inconsistent across studies (very high heterogeneity), and one of the studies was unrandomized. Because the team published only unstandardized mean differences, there was no indication of effect sizes.
Meta-analysis of two studies encompassing 164 participants using the Bruininks-Oseretsky Test of Motor Proficiency similarly yielded significant deficits among children and adolescents diagnosed with ADHD relative to their typically developing peers, but in this case with low heterogeneity. Notably, one of the two studies was not randomized.
Moreover, the team made no assessment of publication bias.
The team concluded, “The findings of this review indicate that children and adolescents with ADHD show significantly lower levels of motor competence compared to their TD peers. This trend was evident across a range of validated assessment tools, including the MABC, BOT, TGMD, and other standardized test batteries. Future research should aim to reduce methodological heterogeneity and further investigate the influence of factors such as ADHD subtypes and comorbid conditions on motor development trajectories.”
However, without a publication bias assessment, reliance on unrandomized studies in two of the tests, no indication of effect size in the same two tests, and small sample sizes, these results are at best suggestive, and will require further research to confirm.
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. More Info
X
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. More Info
X
By clicking, you agree to store cookies on your device to enhance navigation, analyze usage, and support marketing. More Info
X
We use third-party cookies that help us analyze how you use this website, store your preferences, and provide the content and advertisements that are relevant to you. We do not sell your information. However, you can opt out of these cookies by checking Do Not Share My Personal Information and clicking the Save My Preferences button. Once you opt out, you can opt in again at any time by unchecking Do Not Share My Personal Information and clicking the Save My Preferences button More Info
X